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ABSTRACT

We have made a precise measurement of the rapidity dependence of inclusive single

jet production cross section d 2�=(dETd�) in pp collisions at
p
s = 1:8 TeV. The

measurement is based on integrated luminosity of 92 pb�1 data collected by the

D� detector at the Tevatron Collider, Fermi National Accelerator Laboratory. The

cross sections are reported as a function of jet transverse energy in �ve pseudora-

pidity (�) intervals up to � = 3:0. The experimental results are in good agreement

with the theoretical predictions from next{to{leading order perturbative quantum

chromodynamics.
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CHAPTER 1

INTRODUCTION

\He knows the facts, but He does not know this version of the facts."

(Leo Szilard)

Physics, or Natural Philosophy, as it had been known over the centuries, is an

empirical science with the ambitious goal to satisfy our never ending and ever in-

creasing quest for understanding Nature. Its impressive progress over hundreds of

years, and in the 20th century in particular, has led to invaluable applications that

undeniably have had tremendous impact on the well-being of humanity. O�shoots

of Natural Philosophy developed into separate branches of science, allowing us to

harvest its fruits in many exotic varieties. In various epochs, however, including,

unfortunately, the present day, it has not been evident to many how mankind might

bene�t from the progress of physics, and from science in general. And each time we

doubt its ability to pay back, it has proved to be unpredictably and unprecedently

pro�table in more ways than could have been imagined, fully justifying our faith

to invest in science... At the dawn of the new millennium, with the hope that we

will not deviate from this path, this dissertation has been inspired, and is presented

here.

In this work we deal with the smallest and the most fundamental con-

stituents of matter and energy found to the present day. To the best of our knowl-

edge, they may be further indivisible and are, therefore, the best candidates for
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the smallest building blocks of the Nature. They are unimaginably tiny, less than

10�18 meters (m) in extent and, perhaps, they have no detectable size. They are the

subject of study of one of the most visionary (and at the same time very realistic)

intellectual activities of our times known as \elementary particle physics", or \high

energy physics", and the reason for its latter name should become evident as our

story unfolds.

The general idea that all big things are made up of only so many smaller

things is certainly not new, and can be traced back to ancient civilizations tens of

centuries ago. Its remarkable, and probably most attractive feature, is that by know-

ing very well only the few building blocks and all the possible ways of putting them

together, one could hope to derive, and thereby fully understand, the incredible

variety of the surrounding us world. The candidates for the role of these funda-

mental constituents of Nature have been changing with increasing sophistication of

the human thought, spanning from only four substances, or elements: Earth, Air,

Fire, and Water to ephemeral indivisible particles, or atoms|a purely philosophi-

cal concept at the time of their �rst introduction. It is interesting to note that in

these early, rudimentary attempts it always seemed easier to come up with di�erent

candidates for the building blocks than to explain how they could actually be put

together to yield everything else. Today, we call the ways of putting constituents

together the \interactions" among them. And even today, the understanding of the

interactions remains as the hardest part of the puzzle.

Although such ideas were crucial to the development of philosophical

thought, they clearly had little or no e�ect on everyday life over the many centuries.

For one thing, there were many competing ideas around, and nobody really knew
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which of them corresponded to the reality they all pretended to describe. It was

the birth of the experimental science that gave us the powerful tool to discriminate

among many logically plausible candidate theories by directly testing their predic-

tions in real-life experiments. Only after overwhelming experimental evidence had

been collected did the ancient concept of atoms gain a second life and become a

part of our general knowledge. Experiment became not only the ultimate judge,

but also a lighthouse to guide theoretical searches toward a true model of Nature.

While Galileo Galilei's experiments at the turn of the 17th century can

be considered to be the starting point of systematic experimentation in physics, it

was the discovery of the electron at the end of the 19th century that gave birth to

experimental elementary particle physics as we know it today. But where do we

stand today in our search for the building blocks of matter and energy? As a result

of striking progress in particle physics throughout the 20th century the following,

experimentally con�rmed, picture has emerged. The tiny particles|leptons, quarks,

and bosons|are the smallest building blocks of the universe. While the �rst two

are the constituents of matter, the bosons are the corpuscles, or quanta, carrying

the interactions among them, responsible for holding together everything in the

universe, ourselves included.

1.1 The Constituents of Matter: Leptons and Quarks

The longest studied of the lepton family of particles is the electron (denoted by

e), discovered in 1897 by J. J. Thompson in intriguing cathode ray experiments at

Cavendish Laboratory, University of Cambridge. Still, to the present day we have

not been able to detect any substructure in the electron. It is now known to be
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less than 10�18 meters (m) in size, a perfect justi�cation to be called a \point-like"

particle. It carries negative electric charge, and its quantity has become the natural

unit for expressing electric charge because of the major role the electron plays in

electromagnetic phenomena.

The two other charged leptons, the muon (�) and the tau (�), at �rst glance

seem to be unnecessary heavier duplications of the electron with masses respectively

about 200 and 3500 times that of the electron. It is for this reason that out of the

leptons only electron exists in the atoms of our natural world.

In addition, each of these three leptons has an electrically neutral part-

ner: particles called electron, muon, and tau neutrinos (�e, ��, and �� ), respec-

tively. These elusive particles are famous for their inability to interact with almost

anything|they can penetrate through large blobs of mass, such as the earth, with-

out experiencing a single interaction. For decades they have been considered to be

massless particles traveling at the speed of light, but very recent experimental evi-

dence suggests they may in fact have non-zero but, comparatively speaking, rather

small masses.

The quarks show no size down to the smallest currently accessible scale

of 10�19 m. They come in six distinct variates, or 
avors. Their names have

been abbreviated for daily use to the �rst letter: up (u), down (d), charm (c),

strange (s), top (t), and bottom (b) quarks. They carry fractions of the electron's

electric charge. In addition, they also carry another type of a charge, whimsically

christened color. It has nothing to do with the ordinary color. In the same way as an

electric charge is a measure of the strength of the electromagnetic force between two

electrically charged particles, the color is the charge of color force that quarks can
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experience. It is the color charge that allows them to interact much more strongly

than would be possible via their electric charge so that they can bind together

in various combinations to create hundreds of other composite particles similar to

those in the nuclei of the atoms: protons and neutrons.

However, quarks are not part of the hadrons or mesons in the same way as

atom is made up of neutrons and protons with electrons orbiting them. One distinct

characteristic of quarks is that they do not exist in an isolated form in Nature, very

much unlike leptons, for instance.

While an electric charge can be positive or negative, the quark color charge

can be of three types. In the same way as the equal and the opposite electrical

charges give an electrically neutral state (like an atom being overall neutral but made

up of positively charged nucleus and negatively charged electrons), the combination

of all the three di�erent colors gives a color-neutral, or a \white" state.

Since a label is needed to specify the three color charges, in keeping with

the etymology, the three quark colors are conventionally called \red", \blue", and

\green", or, for that matter, any other three colors from an artist's palette that

would yield white when mixed. Each color also has an anticolor associated with it

so that when the two are put together, once again, a colorless state emerges. In

this sense, color and anticolor are the analogues of positive and negative electric

charges in QED. For reasons not quite understood even today, it is only these white

states of bound quarks that can be observed isolated in Nature, making study of the

properties of quarks much more challenging than that of other elementary particles.
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1.2 The Quanta of Interactions: Bosons

No story about building blocks of the universe would be complete without mention-

ing the corpuscles carrying the interactions, or the forces, among them that they all

are destined to obey. There are four forces responsible for all types of interactions

around us. At the same time, they are believed to be the manifestations of only

one, uni�ed interaction although today we surely lack any description of this hypo-

thetical interaction. The four forces we distinguish today are: the electromagnetic,

gravitational, weak, and strong forces. All forces have designated particles to be the

messengers, or carriers, of the interactions. These particles are collectively called

bosons, the most well-known of which is the photon, or a quantum of light.

The photon is the carrier of the electromagnetic force responsible for the

overwhelming majority of the phenomena we experience daily, be it our ability

to see, hear, talk, or even walk. The classical description of electromagnetism

was discovered by James Clark Maxwell in the middle of the 19th century. His

famous equations made it clear that electricity and magnetism are two aspects of

a single phenomenon|electromagnetism. They also suggested that the action of

this uni�ed electromagnetic force propagated with a �nite velocity we now call the

speed of light. Dealing with the understanding of so called \black body radiation",

Max Planck pioneered the idea that radiation|an entity of intertwined electric and

magnetic �elds|may indeed be composed of small quanta of energy. At the time,

this was such a revolutionary idea that it scared o� even its author from developing

it any further. It was Albert Einstein who realized the importance of the concept

of quantization of radiation and successfully applied it to describe the photoelectric

e�ect. It was for this work that Einstein received his Nobel prize|the highest award
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for scienti�c achievement|rather than for his theory of relativity, probably the most

celebrated breakthrough of the 20th century. This was the �rst indication that light

was made up of particles (photons). It took a few more years to �nally con�rm the

quantum (particle) nature of the electromagnetic �eld in X-ray experiments by

Arthur Compton. The photon is a massless particle and therefore, in the absence of

any other matter, or in vacuum, travels at the incredibly high speed of 108 meters

per second, mediating an electromagnetic force at in�nite distances.

Another well known force, gravitation, has also been known for centuries.

Johannes Kepler and Sir Isaac Newton understood how to describe the motion of

planets in the solar system, which is governed by gravitation. The unique feature

of gravity is that, as Newton proposed �rst, everything in the universe is subject

to its in
uence. Its \charge" is mass, and since mass and energy are equivalent,

as it was �rst realized by Einstein when building his theory of special relativity

(E = mc2), everything, even massless particles, experience gravity. On the one

hand, it is the dominant force in the macroscopic world, determining the large

scale structure of the post-big-bang expanding universe, but on the other hand it

is the weakest of the four forces in the micro world of the elementary particles

(with their tiny masses). To date, only a classical, relativistic description of the

gravitation is available, built upon the foundations laid out once again by Einstein

in his theory of general relativity. Every attempt to reveal the quantum content of

the theory, thereby connecting it to quantum mechanics, has so far failed. Despite

this, gravity is believed to be mediated by gravitons, massless and chargeless bosons.

The range of the gravitational force, like that of the electromagnetic, is in�nite.

Unlike electromagnetism, however, it is always attractive.
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The weak force was not known before the 20th century. It �rst showed up

in the mysterious �-decays of nucleons. It is mediated by heavy vector bosons: the

charged W� and the neutral Z0. Their existence was �rst predicted theoretically

en passant the attempts to unify electric and weak forces in the 1960's and was

experimentally con�rmed about twenty years later. Because the mediating particles

are massive, the range of the weak force is limited.

The strong, or the color force too is a discovery of the 20th century. It binds

colored quarks inside the composite particles: hadrons and mesons. This force is

mediated by eight colored agents called gluons. The gluons are massless particles,

but despite this the strong force has limited range for reasons to be discussed in

coming chapters. As with quarks, the gluons are elusive in that they too have never

been seen directly, i.e. isolated. If our current understanding of the strong force

is correct, gluons and quarks will never be seen isolated, as they are destined to

play their role of perpetually unseen constituents concealing their existence from

the world in the act of comprising it.

1.3 Putting It All Together|The Standard Model

The Standard Model of fundamental particles and their interactions is a grand

achievement of the 20th century. Based on the mathematical language of local �eld

theories guided by various symmetry principles, the most celebrated of them being

the local phase, or gauge symmetries, the Standard Model gives the full description

of all the constituents of matter and the interactions among them (with only one

notable exception of gravitation).
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The Constituents of Matter | Fundamental Fermions

Leptons Quarks

Flavor Mass Electric Flavor Mass Electric

(GeV) Charge (GeV) Charge

The First e electron 0:0005 �1 u up 0:003 2=3

Generation �e
electron

neutrino
< 10�8 0 d down 0:006 �1=3

The Second � muon 0:106 �1 c charm 1:3 2=3

Generation ��
muon

neutrino
< 10�4 0 s strange 0:1 �1=3

The Third � tau 1:777 �1 t top 175 2=3

Generation ��
tau

neutrino
< 0:02 0 b bottom 4:3 �1=3

Table 1.1: The fundamental constituents of matter in the Standard Model.

Hadrons and mesons are built of invisible quarks (q) and gluons (g). For

example, the most stable hadrons, neutrons (n) and protons (p) have the following

quark composition: p = (uud) and n = (udd), while the longest-lived meson pion

(�) is made up of a quark and an antiquark: �+ = (u �d ), �� = (�ud ), and �0 =

(u�u� d �d )=
p
2. The neutrons and protons, in their turn, make up the nucleus of

the atom. The electrons rotate around the atomic nucleus creating neutral atoms

which make up all ordinary matter around us. It has been observed that all known

leptons and quarks can be arranged in generations, as indicated in Table 1.1, which

summarizes all known fundamental fermions, their masses and electric charges based

on reference [1]; this list certainly must be complemented by the corresponding

anti-particles. It appears that the �rst generation of these constituents creates the

ordinary matter that we see every day. The members of higher generations have
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been only momentarily observed in man-created particle reactions or in cosmic rays

from the outer space.

Force Carrier Mass Range Charge Spin Strength

(GeV) (cm) (e)

Electromagnetic 
 photon 0 1 0 1 1

Gravitational G graviton 0 1 0 2 10�40

Weak
W�

Z0
boson

80

91
10�16

�1
0

1 10�11

Strong g gluon 0 10�13 0 1 102

Table 1.2: The fundamental interactions, their carriers, and relative strengths.

In addition to the constituents of matter, the Standard Model also sorts

out all the interactions among them. The four fundamental forces along with their

corresponding carriers are summarized in Table 1.2 [1]. The carriers of the forces are

known to be bosons of the corresponding gauge symmetry groups (except perhaps

for the graviton whose quantum nature is yet to be explained). In 1960's it was

demonstrated that quantum electrodynamics, the relativistic quantum �eld theory

of electromagnetic interactions, can be uni�ed with the weak interactions by pos-

tulating the symmetry group SU(2)� U(1), the �rst group in this direct product,

for the weak force and the second one, for the electromagnetic. Although these two

interactions are not uni�ed in the strict sense of this word, they appear to be so

much tied up with each other that they are often said to be uni�ed. Quantum Chro-

modynamics, the modern theory of strong interactions, has underlying SU(3) gauge

symmetry, eight generators of which are the massless, spin 1, colored gluons. It is

believed that gravity is mediated by gravitons of spin 2 but so far no experimental

evidence of this exists.
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There is one unique boson, called the Higgs boson, predicted by the Stan-

dard Model which also awaits discovery. However, unlike the other gauge bosons,

it has a completely di�erent origin and is not the mediator of the four known forces

in the same sense as the bosons listed in Table 1.2. Yet, the role of the Higgs boson

is hard to underestimate: It is needed to create, or \generate", the masses of all

the other bosons as well as of all the fundamental fermions in the gauge theories

of the Standard Model via the mechanism of spontaneous symmetry breaking|the

only known way of introducing masses without violating the gauge symmetries and

other properties of the interactions.

1.4 Jets|The Tools for Studying Quarks and Gluons

After the discovery of the electron by J. J. Thompson, several theories were put

forth to suggest the structure of the atom. The cathode rays were originating from

the neutral matter which was already known to be made up of indivisible neutral

atoms|the evidence supported by the studies in Chemistry. The negatively charged

cathode ray electrons were coming from the atoms, hence the electron had to be a

part of an atom. But what was the other ingredient of atom? There had to be a

positively charged \something else" which, together with negative electrons, could

yield a neutral atom. And, not surprisingly, it was the subject of many speculations.

J. J. Thompson himself put forth the so called \plum-pudding" model of the atom

which stated that an atom was a blob of positively charged paste in which negatively

charged, raisin-like electrons were sprinkled around.

Various models of atoms were soon put to a test by the exceptional exper-

imental physicist Ernest Rutherford. Under his guidance, Hans Geiger and Ernest
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Marsden studied the angular distribution of the energetic heavy alpha particles de-


ected by a gold foil. Quite unexpectedly, they found that there were signi�cant

number of alpha particles scattering at very large angles from their original direc-

tion, and several of them even de
ected backwards. In the words of Rutherford

himself [2]: \It was about as credible as if you had �red a �fteen inch shell at a

piece of tissue paper and it came back and hit you". This was only possible if

the entire positive charge inside the atom was concentrated in even smaller but a

rather dense nucleus. Thus a planetary model of the atom was born with a positive

charge in the center, like the sun in the solar system, and tiny electrons moving

around it in orbits, like the planets orbiting the sun. However, it was known that

an accelerating charge, like an electron in the circular orbit, should radiate and

thus loose its energy. So, the electrons in the planetary model of atom should very

quickly run out of the energy and drop onto the nucleus, destroying the atom. Yet,

matter and, consequently, the atoms were stable. There was something terribly

wrong with this simple model. Who could then imagine that the understanding of

the mind-dazzling act the electron has to perform in order to survive and not fall

onto the atom's center would occupy the greatest minds of the 20th century for

many years to come to discover how very much di�erent the atom actually is from

the solar system, or, for that matter, from everything else known to us?

However, the Rutherford experiment gave us the method for studying the

substructure of matter at the tiniest distances. The size of an atom is about 10�10

m. The human eye can distinguish objects as small as one-tenth of a millimeter, or

10�4 m. With the aid of an optical microscope one could see much smaller objects,

perhaps 1000 times smaller, i.e. of the size of about 10�7 m. But the atom is 1000

times smaller than that. Electron microscope shows pictures of complex molecules,
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and a �eld ion microscope can produce individual images of atoms. But constituents

of atoms (protons, for instance) are one hundred thousand times smaller than atoms

themselves! How does one study the structure of the atom? Or in the present day,

how does one study the structure of the proton whose constituents|quarks and

gluons|are at least another factor of ten thousand smaller, with a size of less than

10�19 m?

The method is based on the principle of the \scattering microscope" demon-

strated by Ernest Rutherford. The target of interest is bombarded by highly en-

ergetic elementary particles, and a careful analysis of the ways they de
ect from

the target allows the experimenter to deduce a picture of the underlying internal

structure. The higher the energy, the shorter the distances which can be probed.

As a next step, one could consider smashing the two composite particles against

each other and letting them probe each other as deeply as possible. In fact, this is

exactly what is done at the Fermilab Tevatron, where protons and antiprotons are

accelerated to extremely high energies and collided head-on. Each hard collision

results in the conversion of beam particle energy into dozens of outgoing particles,

and the only way to extract information from this type of scattering microscope is

to carefully study the \debris". By placing a detector around the interaction point,

one can measure all the emerging particles. The analysis of their behavior may lead

to better understanding of the proton's constituents.

As the energy of the hadron collisions increases, however, a new phe-

nomenon appears. Because of the way quarks and gluons are bound inside the

hadron, their scattering at large angles most often results in the appearance of two

highly energetic, collimated sprays of particles, that have come to be known as
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\jets". Studying of these jets|the direct manifestations of quarks and gluons|and

their cross sections gives us invaluable information about the underlying interac-

tions among quarks and gluons, about the structure of the colliding hadrons, and,

if it exists, about the substructure of quarks and gluons themselves.

The �rst undeniable evidence of hadronic jet production was found in e+e�

colliders in 1975. The jet signature in the �nal state began to emerge at the center-

of-mass (CM) energies of the collisions of 6{8 GeV, but became a dominant pattern

as the CM energy reached 30 GeV. The observed angular distribution of jet polar

angle � of the form 1 + cos2(�) was a clear indication that quarks are a spin 1=2

fermions. In 1982, hadronic jets were observed in hadron-hadron collisions (pp)

at CERN1 at center-of-mass energies of 540{630 GeV. The �rst hadron collider

studies of jet properties and direct tests of QCD were done by the UA1 and UA2

experiments at CERN [3, 4]. In 1985, the Fermilab Tevatron pp Collider began

operation at energies of 1:8 TeV in the CM. These high energies provided a rich

environment for producing hadronic jets in abundance and for studying their various

cross sections and characteristics.

The D� (D Zero) experiment is one of two collider experiments at the

Tevatron. It is an international collaboration of over 500 physicists armed with the

state-of-the-art D� detector designed for studying physics at the Tevatron energies.

For the �rst time, the D� detector provides the ability to trigger and measure jets

at very low angles (about 5�) with respect to the beam line. This allows the �rst

time precise determination of the di�erential cross section for inclusive single jet

production as a function of pseudorapidity. This measurement provides stringent

1European Laboratory for Particle Physics, Geneva, Switzerland.
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test of the QCD over the largest dynamic range to date. It also gives a reliable

understanding of jets as a dominant source of background or as tagging objects at

the Tevatron, as well as at the next generation Large Hadron Collider experiments.

This chapter is followed by a theoretical introduction, and then by the

description of the experimental apparatus, the D� detector. The remainder of the

dissertation is a detailed discussion of the methods and techniques used in the data

analysis leading to the extraction of the physical quantities of interest. At the end,

the experimental results are compared to theoretical predictions.

A Word on the Units and Notation

Throughout this dissertation, unless otherwise noted, we use the so called natural

system of physical units, most appropriate to particle physics. We set both Planck's

constant: �h � h=(2�) = 1:055� 10�34 J�sec and the speed of light in the vacuum:

c = 2:998 � 108 m/sec to unity, i.e. �h = c = 1. The most convenient energy unit

turns out to be 1 GeV � 109 eV, for the energy scale is set, roughly speaking, by

the proton mass of about 1 GeV. Thus the mass, energy, and momentum are all

measured in the same energy units, while distances and times are given in units of

inverse energy. Throughout, �e is the rationalized charge of the electron, so that the
asymptotic (low energy) value of the �ne structure constant is � = e2=4� ' 1=137.

Bold letters usually denote the three-vectors. When using the four-vector

notations, Greek indices run over the four space-time coordinate labels 0, 1, 2,

and 3, with x0 being the time coordinate. The raising and lowering of indices

is accomplished by the metric tensor g�� (which has on the diagonal: g00 = 1,

g11 = g22 = g33 = �1, and the o�-diagonal components all are zeros), in the
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following way: x� = g��x
� and x� = g��x�. Repeated indices are generally summed,

unless otherwise indicated. A shorthand notation for the derivatives is frequently

used with @t � @=@t, and similarly for the space derivatives.
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CHAPTER 2

THEORETICAL INTERLUDE

\Gentlemen, we must bow to nature."

(Julian Schwinger)

A few months after Werner Heisenberg's success in describing quantum mechanics

with matrix equations, Erwin Schr�odinger published a single wave equation pur-

porting to explain almost all aspects of electron behavior in terms of de Broglie

waves, rather than the matrices:

i@t = H : (2.1)

The Schr�odinger wave equation, Eq. (2.1), with the classical �eld  (x; t) and the

classical Hamiltonian H = T + V (x) = p2=2m + V (x), with V (x) = 0 for a free

particle, was easier to use than the matrix equations of Heisenberg. Physicists

knew how to deal with wave equations. It was relatively simple to describe atomic

levels by solving one wave equation instead of dealing with somewhat cumbersome

matrices. Using his equation, Schr�odinger successfully calculated the Balmer lines

and their intensities for the hydrogen. His derivations were straightforward and

easy to follow, while Heisenberg's methods were di�cult to understand. To make

matters worse, as it turned out, the followers of the matrix approach had papered

over di�culties in their mathematics [5]. Very soon, however, Wolfgang Pauli, and

to a lesser extent Schr�odinger himself, demonstrated that the two approaches were

identical. Quantum Mechanics was born.

By that time, Albert Einstein's special relativity was a well established
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theory, according to which, time and space were to be considered together and not

separately, as was customary in Newtonian classical mechanics. In order to obey

the principles of relativity theory, time and space coordinates had to transform

similarly when changing the frame of reference from one inertial system to another,

or, equivalently, to form a four-vector with respect to the Lorentz transformations.

The Schr�odinger equation was, however, explicitly not Lorentz covariant. It has

been shown that the correspondence between classical and quantum equations can

be formally established by substituting the di�erential operators for the classical

energy (E) and momentum (p) in the following manner: E ! i@t and p ! �ir.
Thus, the Schr�odinger equation, Eq. (2.1), for a free particle can be rewritten in

the following form:

i@t =
1

2m
r2 ; (2.2)

explicitly showing that the space and time derivatives enter di�erently, thereby

clearly demonstrating its non-Lorentz covariance. If Quantum Mechanics was to

describe Nature accurately, this problem had to be �xed.

Special relativity not only demonstrated the equivalence of space and time,

but also demanded that energy and momentum also form a four-vector with a

Lorentz invariant \length" E2� p2 = m2. Taking this Lorentz invariant expression

and substituting E and p with their quantum counterparts, gave a free particle

relativistic wave equation known as the Klein{Gordon equation:

�
@2t �r2 +m2

�
� = 0 : (2.3)

Although manifestly Lorentz invariant, the Klein{Gordon equation su�ered from its

own di�culties. The �rst was the property that the standard relativistic relation

between the energy and momentum implied that for each p, there were two possible
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solutions|one with positive, and one with negative, energy: E = �
q
p2 +m2. This

classical result was also true for the wave solutions of Eq. (2.3). The problem could

be avoided in case of a free particle in much the same way as it could be done in

classical physics. It would be postulated that only particles with positive energies

are real physical particles. The existence of a �nite energy gap of �m between

the positive and negative energy states allows this, for neither a classical nor a

free quantum particle can overcome the energy gap. It however had disastrous

consequences as interactions were introduced into the quantum theory. A particle

from the positive energy spectrum could radiate enough energy to make a transition

into the negative energy states, after which there would be nothing to stop it from

rolling down to in�nite negative energy states, emitting in�nite amounts of energy.

This certainly does not happen in the Nature.

The second problem was related to the fact that the Lorentz invariant

probability density, the time component of a four-vector probability current j�,

j0 � � =
i

2m
(��@t�� �@t�

�) ; (2.4)

unlike the corresponding quantity � = ��� for the non-relativistic Schr�odinger equa-

tion, was not positive de�nite. In a second order di�erential equation, such as the

Klein{Gordon equation, � and @t� could be �xed arbitrarily at a given time so that

� of Eq. (2.4) could be made negative. It was not clear how to interpret the negative

probabilities and, therefore, the Klein{Gordon equation had to be abandoned as a

good candidate for the correct single-particle relativistic wave equation.

Soon after Niels Bohr pioneered his quantization rules semi-classically solv-

ing for the hydrogen atomic levels, it was realized that, as a result of quantization,

particles could be described by a complete set of quantum numbers. For instance,
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in hydrogen atom, the electron energy levels could be described by the principle

quantum number, n, which took values from 1 to in�nity as electron moved from

its �rst, closest-to-the-nucleus orbit, to basically continuous energy spectrum of a

loosely bound particle at the outskirts of atom. A complete set of quantum numbers

fully determined the state of the particle, and thus two identical particles with iden-

tical quantum numbers could not be distinguished. Although Bohr's semi-classical

approach worked very well in describing the relatively simple line emission patterns

of hydrogen, it was much harder to understand the spectrum of more complex, heav-

ier elements. As one example, Alkaline-earth metals produced spectral lines which

were slightly separated doublets of almost identical frequencies. To explain this, in

addition to the three quantum numbers introduced by Pauli to describe orbiting

electrons (energy, angular momentum, and orientation in space), he suggested a

fourth quantum number, which he called Zweideutigkeit|two-valuedness.

George Uhlenbeck and Samuel Goudsmit thought this quantum number

could be explained by imagining an electron rotating around its own axis like a toy

top with quantized values of the corresponding angular momentum. If the angular

momentum associated with this spin had a value of 1=2 (�h=2 in the SI units), it could

provide two slightly di�erent energy levels depending on the two ways the electron

could rotate with respect to its orbital motion. When they showed this idea to

Uhlenbeck's teacher, Paul Ehrenfest, he told them to have it checked by Hendrik

Lorentz. Lorentz's verdict was severe: he showed that with such a spin electron

had to rotate ten times faster than the light itself could travel! However, Ehrenfest,

conceivably having liked the idea very much, and as if he himself suspected the

possible problem with it, went ahead and sent the Uhlenbeck{Goudsmit paper for

publication, not awaiting Lorentz's criticism. As a result, despite the failure of the
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original spinning electron model, this new quantum number is still referred to as

\spin".

Pauli also postulated that no two electrons with the same complete sets

of quantum numbers could exist. Subsequently, Pauli's exclusion principle was

formalized by requiring that the wave function of multi-electron state be completely

antisymmetric in all quantum numbers of all the electrons. Enrico Fermi and Paul

Dirac introduced this idea into thermodynamics and thus the particles obeying

Pauli exclusion principle are said to obey Fermi{Dirac statistics, or, more simply,

are called fermions. In much the same way, the particles like photons, for which the

wave function is symmetric, are called bosons as they obey Bose{Einstein statistics.

It was only later that the deep connection between particle's spin and statistics was

mathematically established in the framework of the relativistic quantum theory of

�elds, showing that all the particles of half integer spin are fermions, and all the

particles with integer spin are bosons. In the meantime, however, it was realized

that both the Schr�odinger and Klein{Gordon equations were for spinless particles.

Obviously, this was yet another problem if these equations made a pretense to

describe the spin 1=2 electron.

Dirac tried to attack all theses problems at once by deriving a new relativis-

tic equation for spin 1=2 particles. In order to avoid negative probability densities,

he realized that the equation had to be a di�erential equation �rst order in time. In

order to be Lorentz-invariant, the equation's time and space derivatives had to enter

in the same way. Dirac thus wrote down the general form of such a linear equation

and required it to be identical to the Klein{Gordon equation when \squared". Ba-

sically, the whole procedure was equivalent to the linearization of the Klein{Gordon
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equation. This approach gave him a free particle matrix equation:

(i
�@� �m) = 0 ; (2.5)

with a four-component column-vector of wave function  , or a spinor, and 4 � 4

matrices 
� obeying an anticommutation relation:

f
�; 
�g � 
�
� + 
�
� = 2g�� ; (2.6)

with the usual metric tensor g��. The Dirac equation was linear in time and space

derivatives, and it was demonstrated to be Lorentz invariant. The conserved current

now had a form j� = � 
� , with adjoint spinor � =  +
0,  + being a row-

vector, hermitian conjugate of  . Its time component, j0 was positively de�ned,

j0 � � 
0 =  + � 0, and thus well-suited to the traditional quantum-mechanical

interpretation as a probability density.

By following \minimal prescription", i@� ! i@� + eA�, to introduce the

interaction of an electron of charge e with an arbitrary external electromagnetic �eld

A�, Dirac showed that the conserved angular momentum of the electron indeed had

two terms: one due to its orbital motion and the other, due to its \spin". And the

spin eigenvalues were correct: �1=2. Furthermore, direct solution of his equation

for the hydrogen atom gave an exact formula for the energy levels which had the

�ne structure splitting in it. It became crystal clear that the Dirac equation was

indeed a correct relativistic equation for spin 1=2 particles.

However, Dirac's equation did not solve the other problem of the Klein{

Gordon equation, that of the negative energies. And this was not surprising as,

classically speaking, the equation was derived by the linearization of the quadratic

equation E2 = p2+m2, unavoidably introducing negative energies. More precisely,
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for a given momentum p, out of the four spinor components of the free particle

Dirac equation solution, two corresponded to the positive energy +
q
p2 +m2 while

the other two|to the negative energy �
q
p2 +m2 (two because each spin state

had one positive and one negative energy state associated with it). But unlike the

Klein{Gordon equation, the Dirac equation described fermions|particles of spin

1=2, which were believed to obey Pauli exclusion principle. Dirac made use of this

characteristic of fermions and made a bold suggestion that almost all negative en-

ergy states were already �lled with electrons. Since no two electron could be in

exactly the same quantum state, this picture of the \Dirac sea" rescued electrons

from \falling" into the already-occupied in�nitely negative energy states. The few

available negative energy states, or \holes" behaved just like an electron with oppo-

site quantum numbers: positive energy and positive charge. This was the prediction

for the existence of antiparticles. The prediction was brilliantly con�rmed when,

in cosmic ray tracks observed in a Wilson cloud chamber, Carl D. Anderson found

a particle of exactly the same mass but equal and positive electric charge as an

electron: a positron.

The Dirac theory still had some problems. If the credibility of the quan-

tum theory indeed depended on giving positively de�ned probabilities|one of the

motivations that led Dirac to derive his equation|then the existence of the spin-

less particles would have to be ruled out, for the Dirac's analysis did not solve the

problem of negative probabilities in the Klein{Gordon equation (the only relativis-

tic equation available for spin zero particles). Examples of spin zero particles were

already known by then: the hydrogen atom in its ground state, and alpha particles.

While it could have been argued that these were composite rather than elementary

particles, it was not clear how the idea of elementarity was embedded in Dirac's
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equation.

Furthermore, Dirac's solution of an in�nite sea of fermions certainly could

not work for bosons, as there is no exclusion principle for particles obeying Bose-

Einstein statistics. Thus the prediction of antiparticles for charged bosons could

not have been made based on Dirac's analysis.

Finally, although giving the correct magnetic moment of the electron was

regarded as one of the triumphs of the Dirac's theory, it could not unequivocally

follow from the line of Dirac's arguments. Having introduced electromagnetic in-

teraction into the Dirac equation, it was noted that there is no reason why a term

proportional to [
�; 
�] F�� could not be included as well, since it does not violate

any invariance principles (here the brackets [..] indicate usual quantum mechanical

commutator, while F�� = @�A� � @�A� is the electromagnetic �eld tensor). Then,

by choosing an arbitrary constant in front of this term, additional contributions to

the magnetic moment of the electron would arise. Therefore, apart from pure sim-

plicity, there was no reason to expect any particular value of the electron's magnetic

moment from the considerations that led to the derivation of the Dirac equation.

It took the relativistic quantum theory of �elds to solve all the problems of

relativistic quantum mechanics. The concept of single-particle equations describing

Nature had to be abandoned, giving a way to the quantization of the �elds which

formally obeyed the same equations. Quantization yielded the particle content of

the theory, and instead of the probabilistic interpretation of the square of the wave

function, the j j2 turned out to be a measure of the number of particles. The

concepts of the probability density and probability current were replaced by the

charge and current densities, and so on. And the above-discussed arbitrary term to
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spoil the prediction of the electron magnetic moment by the Dirac equation would

ultimately be ruled out based on the requirement of the renormalizability of the

corresponding quantum �eld theory.

2.1 The Standard Model

The dynamics of a classical �eld is fully described by its equation of motion. The

examples of such equations are Maxwell's equations of classical electrodynamics.

They are often presented as the four coupled equations of the electric (E) and

magnetic (B) �elds and their sources, the charges and currents. The Maxwell

equations are Lorentz-invariant, but this is not apparent when presented in terms

of E and B �elds. Therefore, a better way of to present them in explicitly Lorentz-

covariant form is to introduce the four-vector potential A� = (';A), the asymmetric

�eld strength tensor F�� = @�A� � @�A�, and the source current four-vector j� =

(�; j). One may then write down Maxwell's equations in a rather compact, and,

above all, a Lorentz-covariant form:

@�F
�� = j� and @� ~F

�� = 0 ; (2.7)

with the dual tensor ~F �� de�ned by ~F �� = 1
2
"����F��.

Equivalently, one could start from the classical Lagrangian density of the

electromagnetic �eld L(A�; @�A�) which can be constructed by writing down the

most general form of the �elds and their derivatives satisfying all the general invari-

ance principles that the theory should obey. Then the requirement that the action

functional S[A�],

S[A�] =
Z
d 4x L(A�; @�A�) (2.8)
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be stationary with respect to small variations in the �elds, i.e. �S[A�] = 0, will

yield the �eld equations. The most general classical Lagrangian density for the

electromagnetic (EM) �eld can be written in the following way:

L = �1
4
F ��F�� + j�A� ; (2.9)

with the �rst term representing the EM �eld itself (\kinetic" term) and the second

term its interaction with the source j�. The requirement that the action corre-

sponding to this Lagrangian be stationary yields Maxwell equations, Eq. (2.7).

In the quantum theory of �elds, the �elds are linear operators. They act

in the in�nite dimensional linear Hilbert space which has desirable features not

present in an arbitrary linear space, among others, the existence of the positively

de�ned norm, or \length", of its elements, or vectors. A vector in Hilbert space

corresponds to the state of a physical system with a de�nite number of particles N ,

that is to say, it is an N -particle state. States with di�erent numbers of particles

form an orthonormal representation of the Hilbert space. The Field operators which

obey formally same-looking \�eld" equations as in relativistic quantum mechanics,

are then quantized. This introduces an interpretation of the �eld as a creation or

annihilation operator of the corresponding type of particle. Thus, the number of

particles in any given state can be changed by simply acting on it with a desired

combination of the �eld operators: the N -particle state will transform into the

M -particle, generally a di�erent state, and the initial and the �nal, as well as all

the intermediate states will always remain inside the Hilbert space of the theory.

One of the biggest problems of the single particle equations in relativistic quantum

mechanics, namely, their inability to adequately describe the particle number non-

conservation in variety of experimentally observed processes, or reactions, is thus
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successfully overcome.

2.1.1 The Gauge Symmetries

As in the classical theory of �elds, in quantum theory the Lagrangian density L is

the most general combination of terms with �elds and their derivatives that would

respect the requirements of all the invariance principles. With the development

of the quantum theory of �elds a new type of symmetry emerged as the symme-

try of Nature. It is called the local phase, or gauge symmetry. Combined with

the requirement of Lorentz invariance, it signi�cantly limits possible terms for the

Lagrangian.

Let us consider the Lagrangian density for the Dirac �eld  :

L = � (i 6@ �m) ; (2.10)

where, for any quantity a�, we introduce the standard shorthand notation 6a � 
�a�.

Using the principle of stationary action, it is straightforward to show that it indeed

gives the Dirac equation of Eq. (2.5), as well as its hermitian conjugate equation

for � . The fact that the physics results do not generally depend on the phase of the

complex number is somewhat familiar from usual quantum mechanics. The phase

transformation of the Dirac �eld  ! ei� , with a real and constant phase �, will

leave the Dirac Lagrangian invariant as the phases from  and � will be equal and

have opposite signs, canceling each other in both terms of the Lagrangian (2.10).

This is the same as saying that the Lagrangian in Eq. (2.10) is invariant under the

unimodular unitarity group U(1). It has been realized by Emmy Noether that any

such symmetry of the Lagrangian implies a conserved current. In the case of the

Dirac equation this yields a conservation of the quantity �  , a time component of
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the conserved current. When �elds are quantized, �  becomes an operator for the

total number of particles and antiparticles. Conservation of this total number means

the conservation of the electric charge in the system, which becomes apparent the

moment the interaction of the electron with an electromagnetic �eld is introduced

in the free fermion Dirac Lagrangian.

Consequences of the symmetries of the Lagrangian under phase transforma-

tions become even more dramatic as one further requires invariance under the local

gauge transformations. That is, under the transformations when the phase itself is

a function of space-time coordinate x, i.e. transformations of the type:  ! ei�(x) .

Imagine adjusting phases of the �elds in every space-time location independently of

each other and requiring not a single measurement to be sensitive to such arbitrary

rede�nition of �elds. It is indeed a very demanding requirement and, as a result, the

theories obeying it attain many attractive, and, more importantly, realistic physical

features.

It is clear that the Dirac free �eld Lagrangian of Eq. (2.10) is not invariant

under the local gauge symmetry because the transformation of the �eld derivative

@� ! ei�(x)@� + iei�(x) @�� ; (2.11)

gives rise to an extra term, � �  @��, in the Lagrangian, spoiling the gauge invari-

ance. It is remarkable that this can be cured by introducing into the theory a vector

�eld A� which under the local gauge transformations changes as A� ! A� +
1
e
@��.

If this vector �eld is implemented in the Lagrangian via the term e � 
� A� then the

theory becomes invariant under local gauge transformations as the term � �  @��,

arising from the fermion �eld derivative transformation, is exactly canceled by

�  @�� originating from the transformation of the newly introduced interaction term
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between the vector �eld A� and the Dirac �eld  : e � 

� A� ! e � 
� A� + �  @��.

This new interaction term is precisely the well-known coupling between the pho-

ton and the charged current of classical electrodynamics. Thus, the requirement of

local gauge invariance of the Dirac free �eld Lagrangian forces introduction of the

electromagnetic �eld into the theory, thereby generating the full theory of electro-

dynamics.

To make the theory complete, a gauge invariant \kinetic" term for the

electromagnetic �eld should be added, after which the Lagrangian of Quantum

Electrodynamics (QED) emerges:

LQED = � (i 6@ �m) + e � 6A � 1

4
F ��F�� : (2.12)

Although the gauge �eld \kinetic" term can and should be included in the full

LQED, the same is not true for the usual mass term m2A�A
�, as it would clearly

violate the local gauge symmetry. Therefore, another important consequence of the

gauge invariance is the requirement that the gauge �eld itself be massless, which

certainly is true in the case of QED with its massless photons.

2.1.2 Quantization, and Feynman Diagrams

Once the invariant Lagrangian of the quantum �eld theory is constructed and the

corresponding �eld equations are derived, the �eld operators must be quantized.

This is done in two equivalent ways. One is the original, canonical formalism with

the canonical �eld commutators, time ordered products, Wick's expansion, and

the S-matrix. The other method is that introduced by Richard Feynman which

postulates that the amplitude of the transition is given by the sum (functional

integral) over all possible \trajectories" (in phase space) between the initial and
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�nal states taken with weighting factor of the classical action in the exponent eiS =

ei
R
d4L. Freeman Dyson showed that the two approaches are completely equivalent,

but it turned out that the second method was easier to use in the majority of

practical applications.

The ultimate goal of the relativistic quantum theory of �elds is to give

a prescription for calculating the transition amplitudes or cross sections of various

physics processes. After the quantization, the interactions are evaluated by comput-

ing a perturbation series expansion of the interaction part of the Lagrangian. This

is a lengthy process of bookkeeping of all the terms arising in this power expansion

in �eld operators, and is made particularly tedious by the fact that the �elds as

operators do not generally commute, unlike the c-numbers. Fortunately, however,

this process can always be translated into so called \Feynman rules" which are a

set of exact prescriptions describing how to construct an invariant amplitude in the

theory.

In most physically interesting cases, the Feynman rules can be directly

\seen" from the Lagrangian. Strictly speaking, this is not a correct approach in

general and always must be checked with the rigorous derivation of the complete

set of rules from either the canonical or the path integral approach of quantization.

In this simpli�ed approach, various terms in the Lagrangian are associated with

sets of particle propagators and interaction vertices. This is most easily done in the

momentum representation, rather than in the coordinate representation, using a

simple correspondence i@� ! p�. The free particle propagators are usually obtained

from the terms quadratic in the corresponding �elds as the inverse of the entire

operator enclosed by the �elds. For instance, the form of the Dirac Lagrangian
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Figure 2.1: A few QED Feynman rules in the momentum representation.

� (i 6@ �m) suggests for the fermion propagator a form i=(6p �m) for each virtual

fermion line.

The terms in the Lagrangian associated with interactions induce the Feyn-

man rules for the vertices. The vertex is usually given by the coe�cient of the

interaction term (with proper combinatorial normalization) and the �eld operators

indicating particles entering or leaving the vertex. The rules are also supplemented

by the graphical conventional representations of the propagators and vertices, the

lines for propagators usually being di�erent (straight line, wiggle, dashed line, etc)

for di�erent types of particles. An illustration of some of the QED Feynman rules

in the momentum representation is given in Figure 2.1. The central quantity for

the quantum �eld theoretical calculations, the invariant amplitude M, for a given

physics process is then given by the sum of all possible Feynman graphs, or ampli-

tudes. The cross section �nally is given by the product of the invariant amplitude

squared and the kinematic Lorentz invariant phase space available to the �nal state

of the reaction, d� � jMj2 � dLips.
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Figure 2.2: One loop linear and quadratic divergences in QED.

2.1.3 Divergences, Regularization, and Renormalization

Unfortunately, it turns out that many of the possible Feynman diagrams yield re-

sults which are divergent. Graphs with closed particle loops require summation,

or integration over all possible \running" momenta inside the loop. For example,

the one loop correction to the electron propagator in QED is a linearly divergent

integral. This is illustrated in the top plot of Figure 2.2. At highest momenta

the amplitude corresponding to the graph integral behaves as
R
d4k=k3 and hence is

linearly divergent. Another example of the divergence is the so called photon polar-

ization operator ��� given by the bottom graph in Figure 2.2 being proportional to

the integral expression on the right. It is clear that at high momenta this integral

is quadratically divergent. Such divergences appearing at high momenta came to

be known as ultraviolet (UV) divergences. Another class of in�nities arises when

the integrals diverge at lowest momenta, for instance, when the momentum power

in the denominator is higher than that of the numerator. In contrast, these are
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referred to as infrared (IR) divergences.

The UV divergence is usually \cured" by introducing either a high momen-

tum cuto� or by performing dimensional regularization|the procedure in which

the formal integration is performed in arbitrary, not necessarily integer dimensions.

Dimensional regularization is often preferred because of its explicit Lorentz invari-

ance. In both cases, after rearranging the amplitudes in various ways the limit is

taken by either sending the UV cuto� to in�nity or taking a limit of 4 dimensional

space-time, respectively. The IR divergences are usually not present for massive

theories. Otherwise, they are cured by introducing speci�c resummation schemes

so as to leave the physically measurable quantities free of such divergences.

Certainly, regularization alone is not capable of solving the problem of

in�nities. It has been noticed that in quantum �eld theories it is sometimes possible

to rede�ne the measurable physical quantities such as charge, mass, and vertex

coupling strengths in such a way that all in�nities are taken out. The bare values

of these quantities are postulated to be unknown. The only quantities that can

actually be observed are their renormalized, or \dressed" values, and it is these

values that must be �nite for any theory to make sense. The theories in which all

in�nities can be absorbed by rede�nition of the �nite number of physical parameters

are said to be the renormalizable theories. Strictly speaking, only such theories have

a chance of describing physical reality. This is however not necessarily true in cases

of the e�ective �eld theories, with characteristic energy scales much higher than

that of the theory under consideration. In the low-energy limit, it is allowable for

such theories to contain non-renormalizable terms in their e�ective Lagrangians.

A physical theory clearly cannot depend on the choice of various possible
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schemes used for its regularization and then renormalization. For instance, the �-

nal calculations can not depend on the momentum scale, �, used for regularizing

the integral. The invariance of physical quantities with respect to renormaliza-

tion method gives rise to the renormalization group equations which often reveal

interesting general characteristics of the theory.

2.1.4 The Glashow-Salam-Weinberg Model

The quantum �eld theory of the electrodynamics, QED, turned out to give the

description of all known electromagnetic processes with phenomenal accuracy. The

most vivid illustrative example is the prediction of the anomalous magnetic moment

of the electron, or, equivalently, its gyromagnetic ratio g, which agrees with the

experimental measurement to within eight decimal �gures. But the real triumph

of the quantum �eld theoretical approach was perhaps the joining of the QED and

theory of weak interactions.

After Antoine-Henri Becquerel's accidental discovery of rayonnements in-

visibles|which we now know to be the electrons emitted in the �-decay of the

neutron, n! pe��, from the nucleus of uranium|it took several decades to create a

theoretical framework that would describe this, and similar, processes. In order to

save the conservation of energy|which seemed to be violated in �-decays|Pauli in

1931 proposed the existence of a new, elusive particle, later dubbed the \neutrino",

which was responsible for carrying away the missing energy. Soon after this, and

also taking an advantage of the recently discovered neutron by James Chadwick in

1931, Enrico Fermi in 1933{34, by analogy with QED, proposed a weak interac-

tion Lagrangian with the famous vector-vector (V V ) four fermion coupling as the
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underlying theory of the �-decay:

LF = �GFp
2
[�p
�n] [�e


��] + hermitian conjugate ; (2.13)

where fermion �elds are denoted by the �rst letters of the names of the corresponding

particles in the reaction, and the Fermi constant is GF � 10�5=m2
p, with the mass

of the proton of about 1 GeV.

In the following years, other weak processes were discovered, such as the

weak decays of pions and muons with relatively long (10�8{10�6 s) decay lifetimes.

It was becoming evident that this was an entirely new type of interaction. Because

lifetimes are inversely related to the couplings, it was clear that the e�ective coupling

of this new type of interaction was much weaker than that of the QED, the latter

with the characteristic times scales of interactions of 10�16 s (and weaker still than

strong interactions with characteristic times of 10�23 s).

In the mid 1950's physicists were trying to solve the so called tau{theta

puzzle. In cosmic rays, there were seen two particles of suspiciously identical masses

and lifetimes, which could be told apart only by their decays. One of them, the

theta particle, decayed into the positive parity two pion state, while the other

one, the tau particle, decayed into the negative parity three pion state. If these

two particles were indeed the same, then it would signal the violation of parity,

a discrete symmetry of left and right, at the time believed to be one of the few

exact symmetries in Nature. In fact, Tsung-Dao Lee and Chen Ning Yang in their

article [6] called for more experimental evidence to solve the tau{theta problem.

Soon, in the famous Chien-Shiung Wu's experiment which studied �-transitions of

polarized cobalt nuclei 60Co ! 60Ni� + e� + ��e, parity violation was con�rmed [7]

by observing an asymmetry: the electrons preferred to be emitted in the direction
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opposite to that of the cobalt's nuclear spin.

This unexpected discovery of parity violation suggested a current-current

interaction of the type vector ( � 
� ) minus axial-vector ( � 
�
5 ), or \V � A",

with an e�ective Lagrangian density much like that of Eq. (2.13):

Leff = �GFp
2
Jy�J

� + hermitian conjugate ; (2.14)

where the weak current J� is the di�erence between the vector and the axial-vector

currents. If split into leptonic and hadronic pieces, the leptonic part of J� can be

written as (for the �rst two lepton generations):

J� = ��e

�(1� 
5)e+ ���


�(1� 
5)� : (2.15)

The hadronic part, also having V �A structure, in light of today's Standard Model,

contains quarks, coupling them from the same generation as well as allowing quark

mixing from one generation to another via relatively suppressed weak interactions.

The important consequence of V �A structure is that the helicity projection oper-

ator, (1� 
5), allows only left-handed fundamental fermion �elds in the theory.

Although V � A theory was very successful in describing the experimental

data, it had problems from the point of view of the formal quantum theory of �elds:

the theory induced by the Lagrangian of Eq. (2.14) was not renormalizable. This

was signaled �rst of all by the fact that the weak coupling GF had the units of

the inverse of mass squared. Historically, the search for the correct renormalizable

theory of the weak interactions got intertwined with attempts to unify the weak

and the electromagnetic forces.

The idea of the uni�cation of electromagnetic and weak interactions was

�rst proposed by Julian Schwinger [8] in 1957, noting the vector nature of the two
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interactions. It was Schwinger who �rst considered the introduction into the theory

of two charged vector bosons, which today are known as W� bosons, in an analogy

with charge-neutral vector boson (photon) of QED. With the massive vector �elds

W � the Lagrangian of the interaction could be written as:

LI = g(J�W
� + hermitian conjugate) : (2.16)

Then the experimentally tested V �A Lagrangian could be considered as the e�ec-

tive, low-energy limit of the theory with the interaction Lagrangian of Eq. (2.16).

The equivalence was established via the relation of the coupling constants: g2=M2
W =

GF=
p
2. Thus, the massive vector bosons were necessary in order for the new theory

to have the appropriate low-energy behavior of the V �A type. Schwinger did not

succeed in developing the full theoretical model, so he suggested to his graduate

student, Sheldon Glashow to think about this issue.

By that time, Chen Ning Yang and Robert Mills [9], motivated by the

symmetry of the isotopic spin, had already developed a formal gauge theory with the

underlying symmetry of the group SU(2), a non-Abelian analog of QED. Glashow

was one of the �rst to realize in 1958 [10] that the key to the weak interaction was to

consider it as a local non-Abelian gauge theory in the spirit of the one introduced by

Yang and Mills (YM) in a di�erent context. In his 1961 paper [11] Glashow proposed

the gauge theory with the underlying SU(2)�U(1) symmetry as a candidate for the
uni�cation of the weak and electromagnetic forces. It was very attractive to consider

the weak interactions as a gauge theory a la QED. However, as it was discussed

above, massive gauge bosons were not allowed in the theory, as their mass term

M2
WW

y
�W

� would hopelessly violate local gauge symmetry in exactly the same way

as the mass of the photon would in QED. Also, since the group SU(2) has three
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generators, it was necessary to introduce a third neutral boson Z0, which would

indicate the presence of neutral weak currents. Unfortunately, no neutral currents

had ever been seen in hundreds of careful experiments carried out to that date.

Therefore, Glashow had to speculate that the Z0 boson was in fact very heavy|the

only possible explanation why experimentators had not been able to see it.

Independently, at about the same time, Abdus Salam and John Ward also

proposed a uni�ed electroweak theory based on the YM gauge theory and with the

neutral Z0 boson [12]. Inspired by Schwinger, Salam had been working on the the-

ory with only W� and photons for some time. He had proved that such a theory,

despite Glashow's hopes, was not and could not be renormalizable. It was clear

that the usual mass terms for the vector bosons were banned from the Lagrangians

not only because of the requirement of (perhaps purely esthetically desired) local

gauge symmetry, but also, and from a more practical point of view, because of the

requirement of renormalizability of the theory. Yet, the vector boson masses were

needed for the desired low-energy behavior of the theory. This was the biggest prob-

lem that the theory of weak interactions had to overcome. Unexpectedly, condensed

matter physics came to rescue.

The concept of spontaneously broken symmetry got introduced into the

particle physics by Je�rey Goldstone, a �eld theorist who had become interested in

superconductivity. The essence of this idea is that while the theory itself may have

some higher order symmetry associated with it, its ground state may not; hence the

symmetry is spontaneously broken when the theory is realized in one of its many

possible vacua. The theory of superconductivity, �rst o�ered by John Bardeen,

Leon N. Cooper, and John R. Schrie�er (BCS) [13], was at �rst criticized because
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of its lack of gauge invariance. By the 1960's it was realized that BCS theory was

indeed an example of a broken symmetry. Goldstone suspected that broken gauge

symmetry would give a rise to massless particles in the theory [14], but such massless

particles had not been seen experimentally. Salam and Steven Weinberg actually

took this idea and, in trying to disprove this undesirable feature of spontaneous

symmetry breaking, to their big disappointment, came about proving it right in

three di�erent ways; and it became to be known as the \Goldstone theorem".

A remarkable twist in the development of the gauge �eld theories took place

when it was �rst realized by Peter Higgs that there were no Goldstone bosons in

theories with spontaneously broken gauge symmetry [15]. The gist of the argument

was that in the theory with three massless SU(2) gauge bosons, when the Goldstone

boson appeared, the three bosons would \eat up" the massless particle in such a

way that all three of them would acquire masses and there would be no massless

particle remaining in the theory. In other words, the Goldstone boson would provide

the longitudinal component required to give the three SU(2) bosons mass. This

prescription came to be known as the Higgs mechanism. In the Standard Model,

not only are the masses of the gauge bosons generated in this way, but also the

masses of the fundamental fermions. (Their left-handedness, observed in the weak

interactions, does not allow for the corresponding mass terms to be explicitly written

in the Lagrangian without violating the local gauge symmetry.)

In 1967, Steven Weinberg [16] reinvented Glashow's SU(2) � U(1) theory

and introduced the Higgs mechanism into it. There was no need to include the

gauge invariance violating boson mass terms in the Lagrangian. The necessary

gauge boson masses were induced by the spontaneously broken gauge symmetry of
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the Higgs scalar �eld potential. A year later, the same approach independently was

described by Salam [17] at a small, relatively insigni�cant, but impressively named

congress held outside G�oteburg, Sweden. Thus the uni�ed theory of the weak and

electromagnetic interactions was created, which nowadays is often referred to as the

Glashow-Salam-Weinberg model. However, it took few more years for this model

to become widely accepted. This happened only after Gerardus 't Hooft proved the

renormalizability of the Glashow-Salam-Weinberg model with and without sponta-

neous symmetry breaking in his series of papers in 1971 [18]. About a decade later,

in 1983, the theoretically predicted W� and Z0 gauge bosons were discovered by

Carlo Rubbia's group in experiments at CERN's pp collider [19]. And the reason

for not seeing the weak neutral currents in the experiments at the time when the

electroweak theory was being developed, was �rst understood by Glashow, John Il-

iopoulus and Luciano Maiani [20]. They proposed a mechanism, today known as the

GIM mechanism, which explained that the weak neutral currents were suppressed

by destructive interference among the possible quark-lepton amplitudes. For this to

happen they however needed \lepton-hadron" symmetry, and the existence of the

fourth, charmed quark was thus predicted.

2.1.5 Quantum Chromodynamics

The �rst signi�cant attempt to explain the nature of the strong force was the

\mesotron" theory proposed by Hideki Yukawa in 1934. It suggested that pro-

tons and neutrons were bound inside the atomic nucleus by exchanging a relatively

light but still massive meson, the Yukawa particle, as a result of which the force

had a short range. A good candidate for the Yukawa particle was indeed discovered
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in cosmic ray experiments carried out in 1937 and 1946 and came to be known

as the \pion". Later developments in the quantum theory of �elds required any

meaningful theory to be renormalizable, but the meson theories su�ered from the

so called \overlapping divergences". In 1950, however, Abdus Salam proved that

the theory of the strong force with spin zero particles could be renormalized to all

orders. The Yukawa theory thus lasted until about 1951{52. Then the excited state

of the nucleon, the so called delta, was discovered and the strange particles started

to be found at about the same time. It was becoming clear that the mesotron theory

was inadequate.

During the period from 1947 to 1960, with the �rst modern particle acceler-

ators starting operation at the Berkeley and Brookhaven laboratories, hundreds of

new particles were discovered, including mesons (light-weight) and baryons (heavy-

weight). There was a real need for a taxonomic scheme to classify them based on

their major characteristics. An inspiring example of the successful classi�cation of

the elements was known from Chemistry. In the 19th century, Dmitri Mendeleev

had organized all known chemical elements in his periodic table, thereby predicting

the existence of three new elements. Particle physicists started to make similar

attempts: Fermi and Yang in the US, and physicists at Shoichi Sakata's school

in Japan. No one could �nd a way that would describe all known properties of

the \particle zoo". The �rst successful attempt was made by Murray Gell-Mann in

1961. He considered the symmetry group SU(3) for his model. This group has eight

generators, two of which can be thought of as a third component of the isotopic

spin and the \hypercharge" (the sum of the strangeness and the baryon number of

the particle). The other six generators change the values of the isotopic spin and

the hypercharge, starting from one particle state with a given set of these quantum
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numbers and going to another, with di�erent isotopic spin and hypercharge. It

turned out that the known particles could be nicely assigned to the octet and decu-

plet representations of this group, also making predictions for new particles needed

to �ll some of the empty spots. In a joking homage to the teaching of Buddha,

Gell-Mann called his theory \The Eightfold Way" [21].

A similar picture was proposed by Yuval Ne'eman, who at the time was

working with Salam. He had searched for symmetry groups that would incorporate

strangeness and isotopic spin but would not introduce further complications. Having

considered SO(5), SO(4), Sp(4), SU(3), and G2 groups, he found out that the it

was SU(3) that had all the desirable properties and did not introduce the unwanted

transitions. Although Gell-Mann's and Ne'eman's attempts were successful, they

did not know the reason why such a classi�cation worked. It was hard to understand

why the simplest of the SU(3) group representations, the so called fundamental 3

representation, was not to be used in this classi�cation. Indeed, all the higher order

representations could be built from the basic 3 representation; yet, no particles

could be assigned to it.

It took several years until Gell-Mann 1964 [22] came up with the bold

idea that the particles he was trying to classify were made up of even smaller

constituents. Searching for a name for these new subparticles, Gell-Mann �rst

called them \quork" to rhyme with pork. Later on, as he happened to be re-

reading James Joyce's Finnegans Wake, he came across the phrase: \Three quarks

for Muster Mark", and in his models it was three constituents that were making

up protons and neutrons. Thus, and in a reaction against pretentious scienti�c

language, he picked the name \quark" for his constituent particles [5]. At about
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the same time, another Caltech theorist, George Zweig, then at CERN, came up

with exactly the same idea of quarks, except he called them \aces". Unfortunately,

he never published his paper [23] as he resisted the laboratory regulations to publish

it in a particular form in the laboratory journal, Physics Letters [5].

In Gell-Mann's picture, the quarks had to have fractional electric charges,

2=3 and �1=3 of that of the electron's charge. This was already very hard to accept
as the amount of the electron's charge was thought to be the quantum of the electric

charge. Also, the quarks had to somehow be bound forever inside hadrons, so as to

explain why they had not been seen so far. On the good side, however, the three

quarks (up, down, and strange), and their antiquarks, were the ones to form the

3 representation of SU(3). The higher order representations of SU(3), built from

the fundamental 3, accounted for all observed hadrons, and thus explained them

as made up from triplets of quarks, along with quark-antiquark pairs comprising

mesons.

There was another problem that had to be explained: the wavefunction

symmetry of the �++ resonance, a hadron with a spin 3=2. As a hadron, it was

supposed to be made up of three quarks. Therefore, all three quarks had to have

their spins aligned, and thus be in the same quantum state which was not allowed

according to the Pauli exclusion principle. Strictly speaking, the exclusion principle

was introduced for free particles, and it was not clear if it should also hold for

the fermions tightly bound together by the strong force, as it was the case for the

quarks. It still served as a motivation for Yoichiro Nambu to be �rst to introduce

another quantum degree of freedom, later to be named color by Gell-Mann, and to

assume that the quark of each 
avor came in three states with di�erent colors. In
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this way, the three �++ quarks with aligned spins, could each still be in a di�erent

quantum state.

The fact that the protons and neutrons were composite particles was sig-

naled by their anomalous magnetic moments, which were di�erent from what could

be expected from an elementary particle. As a point-like particle, such as the

electron, the proton's magnetic moment, �p, should have been 1 in units of nu-

clear magneton (nM), while that of the neutron, �n, was supposed to be zero as

it carried no electric charge to interact with the magnetic �eld. The experimental

measurements indicated drastically di�erent values, �p = 2:79 nM and �n = �1:91
nM [24]. Markedly, the absolute deviations of measured values of �p and �n from

their expected structureless values were nearly equal in magnitude, 1:79 nM and

1:91 nM for proton and neutron respectively.

The direct experimental evidence of quarks came from deep inelastic

electron{proton (ep) scattering experiment at SLAC1. It indicated the existence

of point-like, charged fermionic structure inside the nucleon. Based on current al-

gebra, James Bjorken predicted the phenomenon of scaling, which was explained

perhaps in a more intuitive manner by Richard Feynman based on his parton model.

The assumption of the parton model was only that there was a substructure inside

the proton of nearly free particles which Feynman called partons. This picture

alone, without speculations about the dynamics of partons inside the hadron, could

explain the experimentally observed Bjorken scaling.

It was in the fall of 1972 that Gell-Mann presented an almost complete

picture of the theory of strong interactions at the conference celebrating Fermilab's

1Stanford Linear Accelerator Center, Palo Alto, California.
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opening. The quarks were fractionally charged fermions with an additional quan-

tum number color, the same concept that Nambu had introduced earlier. Most

importantly, unlike Nambu's picture, it was a theory with the gauge non-Abelian

symmetry of SU(3) group with some resemblance to the existing Yang{Mills the-

ory. The quarks were bound inside hadrons and mesons by the color force and only

the color-neutral states existed as stable particles. The mediators of the color force

were eight colored gluons corresponding to the eight generators of the underlying

SU(3) gauge group. In an analogy with quantum electrodynamics, Gell-Mann chris-

tened this theory \Quantum Chromodynamics", from the Greek word \chromos"

for color.

To complete the picture, in 1974, Samuel Ting of Brookhaven and Burton

Richter of SLAC observed a very heavy and long-lived meson they called J= [25,

26], which was quickly realized to be the bound state of the charmed quark and

antiquark. The existence of this fourth quark had been predicted earlier based

on the GIM mechanism. Three years later, at Fermilab, a group lead by Leon

Lederman discovered the Upsilon meson (�) [27], ten times heavier than the J= ,

a q�q bound state of the �fth quark, the b-quark. Finally, in 1995, the CDF [28] and

D� [29] collider experiments at the Fermilab Tevatron announced the discovery of

the sixth quark, the top. And the overwhelming evidence of the existence of color

came from e+e� experiments, where the ratio of the cross sections R = �(e+e� !
hadrons)=�(e+e� ! �+��) was directly proportional to the number of colors Nc

(R = Nc

nfX
i=1

Q2
i ), indicating that indeed Nc = 3.

In modern quantum �eld theoretic language, the strong interaction is de-

scribed as a gauge �eld with the underlying exact symmetry of the color group
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SU(3), whose Lagrangian can be written in the following compact way:

LQCD = �1
4
F ��
� F��� �

X
n

�qn
h

�@� � ig
�A��t� +m

i
qn ; (2.17)

where A�
� is the color gauge vector potential; F ��

� is the color gauge-covariant �eld

strength tensor; g2 = 4��s is the strong coupling constant; t� are a complete set

of generators of color SU(3) in the 3 representation (i.e. Hermitian traceless 3� 3

matrices with rows and columns labeled by the three quark colors) normalized so

that Tr(t�t�) =
1
2
���; and the subscript n labels quark 
avors with quark color

indices suppressed. Thus QCD is similar to both QED and the theory of weak

interactions in that it is also a quantum �eld theory with the local gauge symmetry.

But, unlike the electroweak interactions, the symmetry of the color group SU(3) is

not broken and thus gluons are massless. Also, unlike photons, gluons can interact

with each other: as a consequence of its non-Abelian nature, there are the three-

and four-gluon vertices present in QCD the analog of which are absent in QED.

The Feynman rules are similar to those of QED with additional complication and

bookkeeping required for the color indices and combinatorial factors.

One of the remarkable features of QCD is that it turns out to be an asymp-

totically free gauge �eld theory meaning that the coupling gets weaker at shorter

distance scales, or higher momenta (Q2). In 1973 Gross and Wilczek [30] and

Politzer [31] discovered that in non-Abelian gauge theories of Yang-Mills the cou-

pling strength becomes weak with increasing energy. In QCD, the renormalization

group equation (brie
y discussed earlier) in the lowest order yields the following

dependence of the coupling strength on the momentum scale Q [32]:

Q
d

dQ
g(Q) = �g

3(Q)

4�2

�
11

4
� nf

6

�
; (2.18)
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with nf being the number of quark 
avors. The solution of this di�erential equation

is:

�s � g2(Q)

4�
=

12�

(33� 2nf)ln(Q2=�2)
: (2.19)

Thus the strong coupling �s decreases with increasing Q as long as there are no

more than 16 quark 
avors with masses below the energy scale of interest. Since

there appear to be only six 
avors of quarks, QCD is an asymptotically free theory.

This convinced many physicists that QCD may indeed be the correct theory of

the strong interactions as for the �rst time it allowed doing reliable perturbative

calculations of strong interactions, at least at high energies. On the other hand, with

the theory of electroweak interactions at hand, it was thought that the mediators of

strong interactions should be very heavy bosons to explain why they had not been

observed thus far; but unbroken SU(3) gauge symmetry of the QCD suggested that

gluons had to be massless. Asymptotic freedom once again came to rescue. The

increase of �s with high energy or short distance implies an increase at low energy

or large distance. It was thus suggested as a possibility that at large distances only

the color-neutral states can exist since the quarks and gluons will not be able to

overcome the increasingly large potential as they are pulled apart to isolate them.

This is a somewhat handwaving argument for explaining the color con�nement of

partons but, although still a hypothesis rather than a theorem, there appears to be

little doubt that it is correct.

To summarize: with the exception of the gravitation, all other known

particles and interactions appear to be described by the Standard Model, by which

we mean the combined theory of Quantum Chromodynamics and the Glashow-

Salam-Weinberg model of electroweak interactions. That is to say, down to distances
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as small as 10�19 m, the correct theory of all known particles and interactions among

them seems to be the quantum �eld theoretical model with the underlying composite

local gauge symmetry group of SU(3)� SU(2)� U(1), with the exact SU(3) color

symmetry of the strong interactions, and the spontaneously broken (down to U(1)

of QED) symmetry group SU(2) � U(1) for the uni�ed electromagnetic and weak

interactions.

2.2 Jet Cross Sections|A Test of the Standard Model

The unique feature of Quantum Chromodynamics is its asymptotic freedom: at

high enough energies the strong coupling constant of QCD becomes small. As a

result, hard scattering processes among quarks and gluons (often collectively called

partons), can be calculated using the usual perturbative techniques of the quantum

theories of �elds. It therefore becomes very intriguing to subject such de�nitive

predictions of perturbative QCD (pQCD) to experimental tests. However, another

feature of QCD, the color con�nement of partons within color-neutral particles,

poses a nontrivial problem for the realization of such tests. If partons are not avail-

able in free, isolated states, how can one experimentally study their hard scattering?

The answer to this question is as follows: by colliding high energy hadrons instead of

ideally desirable, but physically unavailable, isolated partons. High energy hadron

collisions will result in the scattering of their constituents, quarks and gluons, which

can then be studied in an experiment. Ironically, this somewhat indirect method is

at the same time the most direct method available today for experimental testing

of pQCD.
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Figure 2.3: A cartoonist's view of jet production in pp collisions.

QCD predicts how the �nal state particles from such high energy hadron{

hadron collisions will evolve from collisions of the constituents. Typically only two

partons, one from each of the colliding hadrons, undergo the hard scattering. The

other partons inside the colliding hadrons do not participate in the hard scattering,

and are considered \spectator" partons which form the recoil system. The activity

due to the spectator interactions is often referred to as the \underlying event" of

the hard scattering. As the separation between the outgoing hard-scattered partons

increases (along with that between them and the recoil system) the potential energy

of the binding color force also increases trying to prevent partons from escaping into

colored isolated states. At some point, as the distances grow, the coupling constant

becomes so strong that perturbative methods no longer work, and one must change

to large-distance non-perturbative QCD calculations. This latter is currently not

very well understood despite impressive progress made in recent years.

In this phase of collisions, one can picture the e�ect of the non-Abelian

gluon interaction causing the lines of color 
ux to contract into a thin tube, of high
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energy density connecting the outgoing partons to each other and to the underlying

event. Qualitatively, this picture predicts that the increasing potential energy of the

interaction stored in the color �eld tube will start to materialize itself by emitting

gluons which will split into quark-antiquarks pairs, giving rise to a parton cascade,

or shower.

Partons of di�erent colors in this shower can then form colorless combi-

nations thereby allowing materialization into hadrons and/or mesons|the process

known as \dressing of the quarks", or fragmentation, or hadronization. The energy

scale that sets apart the perturbative and non-perturbative QCD descriptions in

the process of hard scattering is conventionally called the factorization or fragmen-

tation scale �f . All the partons in the shower, as well as their �nal products of

stable, color-neutral particles will have a strong boost in the direction of the origi-

nal, hard-scattered primary parton. Therefore, in the �nal state, QCD predicts the

appearance of highly collimated sprays of particles, or jets, as the manifestations of

the hard-scattered partons. A graphical illustration of the process of jet production

is shown in Figure 2.3 [33].

The production of the hadronic jets is indeed observed to be the dominant

process in hadron{hadron collisions with a center-of-mass energies greater than

about 10 GeV. Today, the highest energy hadron collisions in the world are realized

at the Tevatron where 900 GeV beams of protons and antiprotons collide to unveil

the underlying structure of protons, as well as to test the pQCD predictions for the

parton hard scattering.
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2.2.1 Description of Jet Production

At high energies, partons inside hadrons behave as nearly free particles. Therefore,

highly energetic protons or antiprotons can be considered as a broadened beam of

loosely bound partons|quarks, antiquarks, and gluons. The rates for the hard

scattering phenomena of the partons are thus entirely determined by the rates of

encounters of the partons from two such \beams". It is this idea of nearly free

partons inside an energetic hadron that is the foundation of the parton model,

invented by Richard Feynman [34]. The useful kinematic variable turns out to be the

fraction of the momentum of the hadron that the parton carries: x = pparton=pparticle.

It is often referred to as Bjorken x, after James Bjorken, the discoverer of the scaling

laws for the structural form-factors when they are expressed in momentum fractions

x. With the fractional incoming momenta of the two hard-scattering partons xa and

xb, perturbative QCD can be used to calculate the amplitudes of the elementary

processes in the momentum representation to a desired order in the QCD coupling

strength �s.

However, the x's of the partons are not known a priori. Instead, for a given

hadron, the distributions of the momenta of various constituent partons, known as

parton distribution functions, or PDF's, can be measured and calculated. Then, the

parton momenta can be integrated over all allowable values for a given hadron at a

given energy, and fed into the pQCD matrix elements for the calculation of physical

observables of the reactions. To summarize, there are two ingredients required for

the calculation of the hadronic cross sections: the PDF's and the pQCD matrix

elements of the contributing elementary subprocesses. Integration over all partons

of all momenta from the two hadrons then gives the cross section for the hadronic
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process of interest, a+ b! c+ d,

�(ab! cd) �X
ij

Z Z
dxadxb fi=a(xa)fj=b(xb) �̂(ij ! kl) : (2.20)

Here, fi=a is the probability of �nding constituent i inside particle a with a mo-

mentum fraction xa, and �̂(ij ! kl) is the cross section of the elementary process

leading to the desired �nal state, cd. In a more formal treatment, such a decom-

position into the elementary cross sections and PDF's is supported by the so called

factorization theorem, which thereby introduces the factorization momentum scale

�f which has to be speci�ed when doing direct theoretical pQCD calculations. This

expression for the hadronic cross section in the spirit of pQCD and parton model

has certainly to be complemented by the non-pQCD description of hadronization

giving the evolution of the elementary �nal states kl into the hadronic �nal state

cd.

We will next brie
y discuss proton PDF's and pQCD elementary processes'

matrix elements, and then will apply all the ideas of the parton model to write down

various jet production cross sections.

The Parton Distribution Functions

The parton distribution functions cannot generally be calculated from the �rst prin-

ciples. At a given scale of the momentum transfer Q2, however, the PDF's can be

measured in deep inelastic (DIS) lepton{hadron scattering reactions. Indeed, the

partons were �rst observed in the DIS processes ep ! eX at SLAC, the study of

which has been continued at higher energies at the HERA Collider in Hamburg,

Germany, by the two collider experiments, H1 and ZEUS. According to the parton

model, the proton is made up of two up quarks and one down quark, which carry the
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avor quantum numbers of the proton, and are called the \valence quarks". Many

gluons are also present inside the proton. Finally, there are also all other 
avors of

quarks and antiquarks present inside the proton forming the Dirac sea, and hence

are referred to as the sea partons. These sea quarks result from processes such as

gluons splitting to virtual quark pairs, which most often reabsorb (analogous to

e+e� pairs 
uctuating in the Column �eld of hydrogen).

The momentum distribution (PDF) of the valence u quark, for example,

can conveniently be denoted by uv(x), where x is the usual Bjorken variable. The

corresponding sea distribution can be written as us(x), and the total distribution

of the up quark is given by their sum: u(x) = uv(x) + us(x). The corresponding

antiquark and other parton distributions can then be denoted according to this

scheme. The composition of the proton thus is postulated by requiring that the uv

and dv distributions satisfy the following sum rules:

Z 1

0
dx uv(x) = 2 and

Z 1

0
dx dv(x) = 1 : (2.21)

The quark distributions are empirically determined from the data on electron and

neutrino DIS processes in the Q2 range 5 < Q2 < 800 GeV2. The three light quarks,

u, d, and s dominate the composition of the proton making the contributions from

the heavier quarks negligible when calculating many cross sections. The compar-

ison of the DIS cross sections from muon and neutrino scattering shows the total

momentum fraction of the proton carried by the quarks and antiquarks to be:

Z 1

0
dx x[u(x) + �u(x) + d(x) + �d(x) + s(x) + �s(x)] � 0:5 : (2.22)

Since the contributions from the heavier quarks are small, this result implies that

the other 50% of the momentum is carried by the gluons. The gluon distribution
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Figure 2.4: The CTEQ3M family of PDF's of the light quarks and gluons inside
proton at Q2 = 30 GeV. The left plot shows PDF's themselves, while the right
plot illustrates Bjorken x weighted PDF's to better highlight the di�erences among
them.

functions can experimentally be obtained from processes such as pp ! 
 +X and

pp!  X, or by considering the higher order QCD processes in which virtual glu-

ons contribute to DIS. Although it is di�cult to measure \soft gluon" distributions,

which are currently the most poorly known PDF's for the proton, the current param-

eterizations suggest that the gluon contribution is dominant at the lower Bjorken x

values.

As an illustrative example, the left plot in Figure 2.4 shows the PDF's of

the three light quarks and gluons inside the proton at Q2 = 30 GeV2. In order to

highlight the di�erences among the PDF's, the right plot in the same Figure shows

the same PDF's at the same Q2 scale but weighted by the Bjorken x, i.e. x �f(x),
which has become a traditional way for presenting these distribution functions.

Dealing with x �f(x) is also preferred from the point of view of the theoretical or
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phenomenological applications, as it improves numerical convergence in the neigh-

borhood of x = 0. It is seen that, inside the proton, gluons dominate at low x

values but quark contributions overtake at high x's.

In the most primitive formulation of the parton model, the PDF's satisfy

Bjorken scaling, i.e. do not depend on the scale Q2. The QCD-improved parton

model allows the consideration of gluon emission by a parton, the probability of

which increases with the energy of the parton. This complicates things, as it will

cause the depletion in the probability of �nding a quark at high x. Thus, generally

speaking, the Bjorken scaling is violated. The dependence of the PDF's on the

scale Q2, or their evolution, is described by Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi (DGLAP) equations [35]. It was experimentally determined that the distri-

bution functions increase with increasing Q2 below x � 0:2 and decrease above that

threshold. Since the PDF's can experimentally be measured only at a �nite number

of Q2 values, the DGLAP evolution equations provide extrapolation to the PDF's

to any desired scale, which is necessary for continuous perturbative cross section

calculations.

As a �nal word on the PDF's, it should be mentioned that there are various

groups of physicists who use di�erent methods for obtaining the parameterizations

by using di�erent experimental results, �tting methods, and theoretical or phe-

nomenological schemes. We will concentrate on the most widely used PDF sets by

the CTEQ [36] and the MRST [37] collaborations.

The Contributing Elementary Subprocesses

The other ingredient needed to calculate the hadronic cross section is the invariant
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Figure 2.5: Some of the QCD 2! 2 processes contributing to the order �2s.

amplitudes, or matrix elementsM for all the contributing elementary subprocesses.

The elementary subprocess in pp collisions is the scattering of all possible combi-

nations of the partons. In tree order, or, in the language of the coupling constant,

order �2, these are 2! 2 processes. Some examples of the associated leading-order

Feynman diagrams are shown in Figure 2.5. The cross sections of the processes are

given by the product of the invariant matrix element and the available �nal state

phase space. Table 2.1 summarizes all the possible QCD 2! 2 processes and also

shows their invariant matrix elements squared calculated to the order �2 in terms

of the usual kinematic Mandelstam variables [38], and for the general scattering

process pa+pb ! p1+ � � �+pn, the expression for the Lorentz invariant phase space
is:

dLips = (2�)4�4(pa + pb �Ppi) nY
i

d3pi
(2�)32Ei

: (2.23)

In the order �3s, the third jet may be initiated as a result of the gluon bremsstrahlung

from either incoming parton lines (initial state radiation) or the outgoing, scattered
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Subprocess jM j2=16�2�2s jM(90�)j2=16�2�2s

qq0 ! qq0

q�q0 ! q�q0

4

9

ŝ2 + û2

t̂2
2:2

qq ! qq
4

9

 
ŝ2 + û2

t̂2
+
ŝ2 + t̂2

û2

!
� 8

27

ŝ2

ût̂
3:3

q�q ! q0�q0 4

9

t̂2 + û2

ŝ2
0:2

q�q ! q�q
4

9

 
ŝ2 + û2

t̂2
+
t̂2 + û2

ŝ2

!
� 8

27

û2

ŝt̂
2:6

q�q ! gg
32

27

û2 + t̂2

ût̂
� 8

3

û2 + t̂2

ŝ2
1:0

gg! q�q
1

6

û2 + t̂2

ût̂
� 3

8

û2 + t̂2

ŝ2
0:1

qg! qg
ŝ2 + û2

t̂2
� 4

9

ŝ2 + û2

ûŝ
6:1

gg! gg
9

4

 
ŝ2 + û2

t̂2
+
ŝ2 + t̂2

û2
+
û2 + t̂2

ŝ2
+ 3

!
30:4

Table 2.1: All possible 2! 2 QCD subprocesses and their invariant amplitudes (q
and q0 denote di�erent quark 
avors).

lines, (�nal state radiation). Examples of Feynman diagrams which describe 2! 3

subprocesses are shown in Figure 2.6.

Jet Kinematics

In order for the kinematic variables to accurately represent those of the partons,

the particles inside the jet must all be summed to give global jet quantities, such

as energy and momentum. Although high energy hadron{hadron collisions at sym-

metric colliders occur in their center-of-mass (CM) frame, the constituent partons
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Figure 2.6: Some of the QCD 2! 3 processes contributing to the order �3s.

undergoing hard interaction are not usually in their CM frame, as they may carry

di�erent fractions of the incoming parent hadron's momentum. As a result, the

�nal state emerging from parton-parton scattering is generally boosted along the

direction of the colliding hadrons. But motivated to optimize the detection and

reconstruction of the jets in the �nal state, it is desirable to use a set of explicitly

Lorentz invariant variables for jet kinematics. The usual choice of these variables

is: jet transverse momentum (pT ), azimuthal angle ('), rapidity (y), and mass (m).

The rapidity is de�ned as:

y =
1

2
ln
E + pz
E � pz

= tanh�1
�
pz
E

�
(2.24)

and under a Lorentz boost along the direction of the colliding particles (usually

chosen as a direction of the z axis) to a frame with velocity �, it transforms in a

simple way: y ! y� tanh�1�, yielding a boost-independent distribution dN=dy. In

the limit of high energies, when the mass of the jet can be neglected, the rapidity
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is reduced to a more convenient pseudorapidity � which can be written in terms of

the polar angle �:

� = �ln
"
tan

 
�

2

!#
: (2.25)

In the experiment, the directly measured jet quantities are energy (E), pseudora-

pidity, and azimuth. The transverse momentum of a jet is then calculated as

pT = E=sin� = Ecosh� : (2.26)

Jet Cross Sections

With all the necessary ingredients at hand, we now are in a position to write down

the various jet cross sections resulting from pp collisions. The total cross section for

two jet, or dijet, production is given by:

�(pp! 2jets) =
X
ijkl

Z Z
dxpdx�p fi=p(xp)fj=�p(x�p) �̂(ij ! kl) ; (2.27)

where the sum runs over all partons, the 2 ! 2 elementary subprocesses �̂ are

calculated in pQCD, f(x) are the corresponding PDF's, and the integration is over

all parton momenta. Figure 2.7 is a picture of a real dijet event observed and

measured with the D� detector.

The next-to-leading order parton-parton hard scattering allows for gluon

bremsstrahlung in the initial or the �nal state of the incoming partons. Such events

may result in a three jet �nal state which can be described in the analogous way:

�(pp! 3jets) =
X
ijklm

Z Z
dxpdx�p fi=p(xp)fj=�p(x�p) �̂(ij ! klm) : (2.28)

A real three jet event observed by the D� detector is shown in Figure 2.8.
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 CAL TOWER LEGO   4-MAR-1994 17:14 Run   62793 Event    3699     26-MAR-1993 09:55

Miss ET 

CATD ETA-PHI ET                 

 EM ET         

 HAD ET        

CATD LEGO ETMIN =  1.00 GeV

Figure 2.7: A lego � � ' plot of the real dijet event in the D� calorimeter.

2.2.2 The Single Inclusive Jet Cross Section

The experimental determination of the inclusive jet cross section in pp collisions,

pp! jet + anything ; (2.29)

is the most direct test of perturbative QCD and thus of the Standard Model. In

the framework of the parton model, the total cross section for this reaction is given

by:

�(pp! jet+X) =
X
ijk

Z Z
dxpdx�p fi=p(xp)fj=�p(x�p) �̂(ij ! k +X) ; (2.30)

where X stands for any number and type of objects, including jets, that could

emerge in the �nal state along with the scattered parton k. Therefore, it is clear

that by measuring this cross section experimentally, not only pQCD predictions are

tested, but also the structure of the proton, i.e. the parton PDF's. The Fermilab
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 CAL TOWER LEGO   4-MAR-1994 17:45 Run   61820 Event    2652      6-MAR-1993 05:20

Miss ET 

CATD ETA-PHI ET                 

 EM ET         

 HAD ET        

CATD LEGO ETMIN =  1.00 GeV

Figure 2.8: A three-jet event observed in the D� calorimeter.

Tevatron provides the arena for carrying out measurements of a large variety of

physics processes involving jets. Recently, the next-to-leading order (NLO) theoret-

ical calculation of the inclusive jet cross section have become available, which add

particular interest to this measurement at the Tevatron.

It is, however, nearly impossible to measure the total jet cross section in

the experiment. Despite the very good solid angle coverage of the D� detector,

substantial energy escapes undetectable at small angles through the Tevatron beam

pipe itself (j�j > 4:7). Moreover, due to trigger and reconstruction ine�ciencies,

it is practically impossible to accurately determine the dominating lowest ET spec-

trum of the cross section. On the other hand, the determination of the di�erential

cross sections is possible in the �nite intervals of ET and pseudorapidity � (above

approximately ET = 10 GeV and for j�j < 4:7). The double di�erential inclusive
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jet cross section, measured with the D� detector, thus, is de�ned as:

d2�

dETd�
(pp! jet +X) : (2.31)

The measurement is then compared to next-to-leading order theoretical predictions

in the wide kinematic range.

To reiterate, in this measurement we test only the perturbative predictions

of the QCD that describe parton-parton hard scattering. The theoretical calcula-

tions are today available in next-to-leading order, or �3s in QCD coupling strength.

They are based on the jet de�nition at the parton level. Because of the �nite, large

angular size of the jet (at D� a �xed cone size of 0:7 is used in � � ' space to de-

�ne a jet), non-perturbative processes governing the hadronization and associated


uctuations are not important for any practical purposes.

Some detailed systematic studies in the course of this analysis requiring

more fundamental understanding of the jet structure are aided by available Monte

Carlo programs, such as Herwig [39] or Pythia [40] which implement several

di�erent hadronization schemes. Usually it is found that the results of the mea-

surement reported here are independent of such large scale QCD behavior. Some

of the relevant details of the NLO theoretical pQCD calculations to which data are

compared will be discussed in the corresponding chapter.

Parton Compositeness

Another question that the measurement of the inclusive jet cross section may help

to answer is whether or not the partons themselves are composite particles. It

is theoretically possible that quarks and gluons have a substructure governed by

some new kind of strong interactions at an energy scale �c much larger than the
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Figure 2.9: Inclusive di�erential jet cross section (j�j < 0:9) using the Papageno
leading order generator with di�erent values of �c, as indicated.

characteristic scale � of QCD. In much the same way as the gauge symmetry of

QCD traps quarks and gluons inside hadrons and mesons, there might be some other

interaction that would bind together more fundamental fermions, or preons, inside

quarks and gluons. This theory would have to be an asymptotically free theory

with massless gauge carriers. Otherwise, to bind preons at such small distances,

the gauge bosons must be extremely heavy and they would have already been seen

in high energy experiments.



81

At low energies, E � �, such an underlying theory can e�ectively be de-

scribed by higher order interaction terms, such as �  �  . Although clearly unrenor-

malizable, inclusion of these terms into standard QCD Lagrangian is still allowable,

with the realization that they describe an e�ective theory. For instance, one such

candidate was proposed in reference [41]:

L = � 1

2�2
c

(uL

�uL + dL


�dL)(uL
�uL + dL
�dL) :

The addition of such terms leads to deviations from the expected pQCD behavior at

energy scales nearing the characteristic energy scale of the underlying interactions

�c. Figure 2.9 shows leading-order predictions of the inclusive jet cross section using

Papageno, a Monte Carlo generator which includes the compositeness contact

term. Appearance of the rise in the cross section at highest ET is clear, and, as

expected, the deviations from pQCD predictions (corresponding to �c =1 in this

Figure) start to appear at lower values of ET as the value of compositeness scale �c

is reduced.

Therefore, the precise measurement of the jet cross section can be used to

determine whether or not there is any substructure at the energy scales currently

accessible to us. This, of course, is a continuation of the ideas originated in the

famous Rutherford scattering experiments of energetic � particles scattering in a

gold foil. The excess in the number of de
ected � particles at high angles indicated

the substructure of the atom. Unfortunately, in jet cross sections, the appearance

of the same signature may be due to experimental and/or theoretical uncertainties,

e.g. poorly determined PDF's in certain kinematic regions, as they too are exper-

imentally measured with varying degree of accuracy in di�erent areas of the phase

space. This makes searches for parton substructure even more challenging.
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CHAPTER 3

THE EXPERIMENT

Senator Pastore: \Is there anything connected with the hopes of this accelerator

that in any way involves the security of the country?"

Dr. Wilson: \No sir, I do not believe so." ...

Senator Pastore: \It has no value in that respect?"

Dr. Wilson: \It has only to do with the respect with which we regard one

another, the dignity of men, our love of culture... It has to

do with, are we good painters, good sculptors, great poets? ...

It has nothing to do directly with defending our country except

to make it worth defending." [42]

Particle colliders, today the biggest pieces of scienti�c equipment in the world, have

become a well established tool in high energy experimental physics primarily because

they can reach the highest collision energies. At the highest energies in the center-

of-mass (CM) frame of reference of the colliding particles, experiments are able to

probe the smallest distances possible in order to reveal the laws of physics governing

the behavior of fundamental constituents of matter. How deep one can probe matter

by particle scattering is limited by the de Broglie wavelength � � 1=q, q being

momentum transferred between the two colliding particles. In addition, the highest

possible CM energies cross thresholds for the production of the heaviest of the

particles, and allow the study of their previously unexplored fundamental properties.

Based on the widely accepted big-bang cosmological model of our universe, we

now believe that very high energy collisions naturally occurred in the very early

moments of the universe. High energy collisions continue to take place in cosmic
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ray interactions with matter (as, for instance, in the earth's atmosphere) providing

us with useful information. However, the precision of measurements obtainable from

these sources is not of comparable quality to that from controlled experiment's setup

at colliders which allows systematic experimentation. The complexity of extracting

laws of physics from collider experiments can be illustratively compared to trying

to understand the precise mechanism of the operation of Swiss watches by smashing

them against each other and analyzing the resulting debris.

There are two basic ways to create high energy collisions, each with its

relative advantages and disadvantages. One way is to direct a beam of energetic

particles onto a stationary target (so called a \�xed target" experiment). Another

way is to collide particles head-on from two beams moving in opposite directions

(collider experiments). The biggest advantage of the collider experiments is that

the energy in the CM system increases linearly with the beam energy (assuming

the energies of the two colliding beams increase together), while in the �xed target

experiments it increases only with the square root of the beam energy. The disad-

vantage of colliding beam experiments is low event rates, or luminosity L, generally
de�ned as the product of incident beam 
ux (particles per second) with mean tar-

get density (particle per unit area). Since the cross sections � of many important

non-strong physics processes are small, very high luminosities are needed to give

corresponding event rates (L � �) high enough to yield statistically signi�cant data

samples. In �xed target experiments, the event rates can be increased more easily

by selecting high density target materials and by using long targets. In collider

experiments, on the other hand, high event rates are achieved by pinching down

the beams to very small size at the crossing points and also (in circular colliders)

by circulating the beams to get multiple crossings. In addition, storing particles
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in circulating beams poses its own limitations. For example, colliders are limited

to beams of charged and stable particles: e�, p, and p. These and many other

practical di�culties associated with the creation of colliding beams have been suc-

cessfully overcome. Since the mid 1970's colliders have been a primary tool for

studying physics at the energy frontier.

3.1 The Fermilab Accelerators

The Enrico Fermi National Accelerator Laboratory (Fermilab), located about 30

miles west of the \windy city", Chicago, currently houses the world's highest center-

of-mass (CM) energy proton{antiproton (pp) colliding beam accelerator, the Teva-

tron, which started its operation in mid 1980s. It achieved previously unprecedented

energies of 1:8 TeV in the CM of colliding particles, and thereby opened a new fron-

tier in high energy physics research. Acceleration of protons and antiprotons to high

energies is achieved via a multi-step process employing several distinct accelerators

and/or storage rings for di�erent energy ranges. Figure 3.1 schematically shows

the entire Fermilab accelerator complex. The Tevatron itself is the last accelerator

in this chain. This section describes the basic steps in the acceleration process at

Fermilab, as a more detailed discussion lies outside of the scope of this manuscript

and can be found elsewhere [43].

The proton beam begins life in the preaccelerator which consists of the

magnetron surface-plasma source housed in an electrically charged dome. The mag-

netron source converts regular hydrogen gas (H2) to ionized hydrogen gas (H
�). The

H� ions are then allowed to accelerate from the charged dome to the grounded wall

through a column across the high accelerating voltage provided by a commercial
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separated here for clarity.
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Cockroft{Walton generator, a solid state device, that generates high voltage by

charging capacitors in parallel and discharging them in series. With �ve stages of

voltage multiplication, the generator boosts the input voltage of 75 kV by a factor

of ten, with very little variation. As a result, H� ions are accelerated to an energy

of 750 keV, and they next enter the linear accelerator (Linac). The Linac consists of

14 cylindrical accelerating tanks or cavities arranged colinearly with a total length

of approximately 150 m. The H� ions emerge from the Linac with an energy of

400 MeV and drift an additional 46 m before injection into the Booster, the �rst

circular accelerator, or synchrotron, in the acceleration chain.

Upon entering the Booster, the H� ions pass through a carbon foil which

strips the electrons from the ions, leaving only the proton core. The Booster consists

of a series of magnets arranged in a 75 m radius circle, with 17 radio frequency (RF)

cavities interspersed, accelerating protons to an energy of 8 GeV. The accelerated

proton beam from the Booster can be directed to four di�erent locations depending

on the need. These four locations are: the Main Ring (via the 8 GeV line), the 8

GeV line dump (a depository for unneeded beam), the Long 3 dump, and the AP4

line which leads to the antiproton source.

The Main Ring (MR) is a synchrotron 1 km in radius that consists of 1000

conventional copper-coil iron yoke magnets which continually bend and focus the

protons. The MR is divided into 6 sections, or sectors, labeled A through F. It

has 18 accelerating cavities located at the beginning of the sixth sector (F sector).

The MR can accelerate protons from 8 GeV to either 120 or 150 GeV, depending

on their next destination. In addition to accepting protons from the Booster, the

MR can also accept antiprotons from the antiproton source at 8 GeV and accelerate
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them to 150 GeV. Once the proton or antiproton beam in the MR is accelerated to

150 GeV, it can be injected into the Tevatron. The proton beam accelerated to 120

GeV can be sent to the antiproton source.

The antiproton beam is produced in a multi-stage process starting in the

MR and involving several di�erent machines. Production starts when a proton

bunch is extracted from the Main Ring at 120 GeV. The bunch is directed onto

a tungsten target producing p's with wide momentum spread. A strong focusing

magnet, the lithium lens, selects p's with a momentum spread of 3% around 8:9

GeV. Then, the p's are injected into a small synchrotron, called the Debuncher,

where they circulate for 2 sec while the momentum spread is reduced and transverse

betatron emittance is reduced via stochastic cooling [44]. This cooling process is

then continued in the accumulator, a storage ring where the p's are accumulated

for several hours (stacking) until there are enough of them to transfer to the Main

Ring. When that happens, six bunches of p's are extracted from the core of the

beam where the energy spread is only 0:05%. Then, they are injected into the Main

Ring where they are accelerated to 150 GeV.

In the �nal stage of the acceleration process, the 150 GeV protons or an-

tiprotons are injected into the Tevatron from the MR. The Tevatron, designed with

the constraint of �tting within the existing MR beam tunnel, has the same ba-

sic layout and shares the same radiation enclosure as the MR, and is located 65

cm directly below the MR magnets. Such small vertical separation between the

Tevatron and the MR would create di�culties for the collider detectors placed at

interaction regions of the Tevatron. Each detector would have to have a hole for

the MR and also su�er from the losses of the MR protons or antiprotons from time
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to time, further complicating the physics analysis. To avoid this, an \overpass"

was built for the MR at the interaction region B� to bypass the CDF (Collider

Detector at Fermilab) detector to be placed at that location. This required a major

reconstruction of the beam tunnel and separation of 19 feet was achieved. However,

the prototype of this overpass was �rst built at the interaction point D� but with a

separation of only about 89 inches to �t inside the existing tunnel, as there was no

second collider detector at that time. As a result of the design of the D� overpass,

the current D� detector is perforated by the MR pipe.

The Tevatron is the third synchrotron and consists of 1; 000 superconduct-

ing magnets. To maintain their operating temperature of 4:3 K, the Tevatron is

cryogenically cooled by immersing the coils in liquid helium. There are 8 RF cavity

accelerating sections in the Tevatron ring. The Tevatron can accept both protons

and antiprotons from the MR. Fermilab generally operated the Tevatron with six

bunches of protons and antiprotons rotating in the opposite directions. A radio

frequency process called cogging is used to adjust the 12 intersection points so that

a bunch crossing occurs at each intersection region every 3:5 �s. Then, all bunches

are accelerated to 900 GeV to provide a CM energy of 1:8 TeV.

The instantaneous luminosity, L, is a measure of the interaction rate. It is

given by:

L =
fNbNpNp

4��2

where f is the crossing frequency, Nb the number of bunches, Np, Np the number

of p's and p's and ��2 the area or section of the beam. One way to increase the

instantaneous luminosity at the collision point is to reduce the transverse beam size
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in that region. This is achieved by specially designed strong quadrupole magnets

placed on either side of the interaction point to reduce the beam (transverse) spot

size to approximately 40 �m.

3.2 Overview of the D� Detector

The D� detector is a large, multipurpose apparatus designed and constructed to

study proton{antiproton collisions in the center-of-mass energy of 2 TeV. Its name

derives from its location in the Fermilab Tevatron ring, being operated at one of

the six interaction regions, identi�ed as D�. The �rst data taking period, or a run,

with the D� detector started in August 1992 and lasted through May 1993. The

following run started shortly thereafter, in December 1993, and continued through

July 1995. These two runs at the pp CM energy of 1:8 TeV are collectively referred

to as Run 1 for the D� experiment. To distinguish between the two data sets

collected during the �rst and second periods of Run 1, they are often referred to

as Run 1A and Run 1B, respectively. The analysis presented here is based on the

Run 1B data sample.

The D� detector is built to cover a wide spectrum of physics topics by

providing accurate measurements to test the Standard Model predictions and to

search for new phenomena. This includes, but is not limited to, the search for the

top quark, various jet and photon cross section measurements, b{quark production,

and the studies of W and Z bosons. Designed to be somewhat complementary to

the other, already existing collider detector at the Tevatron, CDF, the emphasis

in the D� detector is on excellent calorimetry. Good measurement of high trans-

verse momentum parton jets by means of �nely segmented, hermetic, linear, and
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nearly compensating calorimeters, precise determination of the missing transverse

energy (E/T ) in the calorimeters as a way of detecting neutrinos and possibly other

non-interacting particles, and excellent identi�cation of electrons and muons are the

strengths of the D� detector. In Run 1, little emphasis has been placed on iden-

tifying and tracking individual particles within jets, as the details of hadronization

are not relevant to the underlying hard scattering. As a result, there was no central

tracking magnetic �eld in D� Run 1.

In preparation for the Tevatron's next and its second run, the Run 1 D�

detector is undergoing a signi�cant upgrade. The goal is to have improved tracking

and vertexing capabilities (primarily with the new Silicon Vertex Detector), better

muon identi�cation, and faster and more e�cient readout electronics to meat the

Tevatron's increased luminosities by an order of magnitude compared to Run 1.

The new run should also achieve slightly higher pp CM collision energy of 2 TeV,

and is scheduled to begin by the end of year 2000.

A general view of the Run 1 D� detector is shown in Figure 3.2. Fully

assembled, it stands approximately 13 m in height, 11 m in width, and 17 m in

length, with a total weight of about 5500 tons. Not shown in the �gure is the

detector support platform on which the entire structure rests. This platform is

mounted on twenty 500-ton Hillman rollers so that the entire detector may be

rolled along hardened steel tracks from the assembly area to the collision hall. The

platform also provides rack space for the detector electronics and other support

services.

A right-handed coordinate system is adopted, see Figure 3.2, in which the

z{axis is along the proton direction and the y{axis is upward. The angles ' and
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Figure 3.3: The Central Detectors.

� are the azimuthal and polar angles, respectively. The radial coordinate r is the

distance from the beam line.

In the following sections, the di�erent components of the Run 1 D� detector

are described based on reference [45]. From the inside to the outside, the detector

consists of three main systems: the central detectors, the calorimeters, and the muon

system. Since the D� calorimeters are the principle tool for the measurement of

jets|the central objects of the physics analysis presented in this dissertation|the

description of the calorimeters, naturally, is more detailed.

3.3 The Central Detector

The Central Detector, a compact system of concentric tracking and transition radia-

tion detectors illustrated in Figure 3.3, is enclosed in the cylindrical volume between
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the Tevatron beam line and the inner cylindrical aperture of the calorimeters. The

the entire system extends 135 cm along the �z-axis, centered at z = 0, and is en-

closed within a radius of 78 cm in the direction perpendicular to the beam line. The

tracking detectors are wire drift chambers. As a charged particle traverses them, it

ionizes the chamber active media which usually is gas mixture rather than liquid

to avoid any signi�cant disturbance in the particle's path itself. Arrays of many

anode or sense wires at su�ciently high potential immersed in the gas create an

electric �eld in which liberated electrons accelerate to high enough energies to initi-

ate secondary ionization, the secondary electrons inducing tertiary ionizations and

so on. It is this cascade or avalanche of electrons that ampli�es otherwise tiny signal

by several orders of magnitude (gas gain) allowing its detection and measurement.

Knowing the drift velocity of the charge carriers in the media and the time when

the particle of interest entered the chamber (in D�, the �rst time marker is taken

to be the beam crossing time), a position or hit of the traversing particle can be

measured.

Connecting hits from the several layers of the tracking system, a contiguous

track of the incoming particle can be reconstructed. The drift chambers also mea-

sure the energy loss (dE=dx) of the incoming particles since the measured signal is

proportional to its energy. In
uenced by the absence of a central tracking magnetic

�eld, the Central Detector system was designed to achieve good spatial resolution

of individual particles, good two-track resolving power, high e�ciency, and good

ionization energy determination for better electron identi�cation. In the follow-

ing sections, the subdetectors which make up the Central Detector are described,

working from the inside, outward.
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3.3.1 The Vertex Detector

Figure 3.4: A quadrant of the Vertex detector|end view.

The Vertex Chamber (VTX) is the innermost tracking drift chamber and completely

surrounds the beam pipe, which consists of a very thin cylinder of beryllium1 with

an outer radius of about 3:7 cm. The outer radius of the Vertex chamber is 16:2

cm. The VTX was designed to reconstruct tracks around the interaction region and

measure the vertex position. The vertex and tracking information is essential for

non-inclusive jet analysis and for an accurate determination of the jet ET . The VTX

is made of three mechanically independent concentric layers of cells, see Figure 3.4.

The innermost layer is 97 cm long and has 16 cells, while each successive layer is 10

1The beam pipe is needed to maintain the vacuum to minimize interactions of p's and p's with
air molecules and beryllium was chosen to minimize multiple scattering.
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cm longer than the preceding one (thus providing total coverage for j�j < 2:3), and

is divided into 32 cells. In each cell, there are 8 sense wires of 1:8 k
/m resistivity

kept at +2:5 kV potential which provide the measurement of r � ' coordinate of

the hit. They are o�set by �100 �m with respect of each other (staggered), to

help resolve left-right ambiguity. To further aid in pattern recognition, avoid dead

regions, and facilitate calibration, each layer is o�set in azimuth (') with respect to

each other. The sense wires are read out at both ends to also provide the z position

measurement using the method of charge division.

The active medium for the chambers is a gas mixture of CO2 (94:5%) and

ethane (5%) with small (0:5%) admixture of H2O (which was shown to stabilize

the chamber operations in a high radiation environment) with a gas gain of 4� 104

and typical drift velocity of about 7:3 �m/ns under normal operating conditions of

average drifting electric �eld of approximately 1 kV/cm. Unfortunately, the method

for the measurement of the z coordinate does not work well with the usual observed

high cell occupancies, achieving z position resolution of only about 1:5 cm. In

contrast, the VTX has a good r � ' resolution of about 60 mm and also is 90%

e�cient in separating two hits 0:63 mm apart.

3.3.2 The Transition Radiation Detector

The electric �eld associated with the moving charge of a particle traversing a

medium causes polarization along its path. The e�ective range of this electric �eld

or, equivalently, the spatial extent of the induced polarization are di�erent in ma-

terials with di�erent electromagnetic properties. As a result of this di�erence, the
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sudden redistribution of charges in the medium associated with the changing elec-

tric �eld of highly relativistic particle crossing the interface between two media with

di�erent dielectric or magnetic properties gives rise to electromagnetic radiation in

the X-ray range called the \transition radiation". Transition radiation becomes

useful for particle detection when the photons are emitted in the soft X-ray range

(energy range of 2{20 keV) and along the particle direction at very low angles of

order 1=
, with 
 being the usual Lorentz factor. Therefore this method is useful

for highly relativistic particles with 
 larger than 103. As a result, detectors based

on transition radiation emission are used to provide electron/pion separation in the

momentum range 0:5{100 GeV. In addition, the typically very low photon yield

per each boundary crossing must be increased, which is often achieved by stacking

several hundred layers of low{Z foil (radiators) in a gas.

The D� Transition Radiation Detector (TRD), with the schematics of its

section shown in Figure 3.5, surrounds the Vertex Chamber. It consists of three

separate concentric layers each containing a radiator and and an X-ray detector. The

radiator part of each of the TRD layer has 393 foils of 18 �m thick polypropylene

in the volume �lled with nitrogen gas to provide inter-foil gaps between radiation

interfaces of 150 �m. The X-ray detection is accomplished by a wire drift chamber

mounted just after the radiator. Since electrons are the only likely inducers of

detectable transition radiation at Tevatron energies, the TRD is used to identify

them. Pion rejection factors of about 50 are found at 90% e�ciency for electron

detection.
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Figure 3.5: A section of the Transition Radiation Detector.

3.3.3 Central Drift Chamber

The Central Drift Chamber (CDC) is the outermost tracking device, �tting between

the TRD and the Central Calorimeters with inner and outer radii of 49:5 and 74:5

cm, respectively, extending 92 cm in�z direction, thereby providing wide angle (out
to j�j � 1:2) coverage for charged particle tracks. The CDC is a cylindrical shell

made of four concentric rings, each divided into 32 azimuthal unit cells. A segment

of the CDC is shown in Figure 3.6. Each cell contains 7 gold-plated tungsten sense

wires of 30 �m in length running parallel to the beam line and are read out from

one end. As in the VTX, in order to help resolve left-right ambiguity, the adjacent

sense wires are staggered by 0:2 mm. In addition, the cells in di�erent layers are also
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Figure 3.6: End view of a section of the Central Drift Chamber.

o�set in ' by about one half of unit cell to aid in pattern recognition. To measure

the z{position of the avalanche, two delay lines are embedded in the inner and outer

walls of each layer next to the sense wires. The delay lines are carbon �ber rods

wrapped with a winding of magnet wire. The fast gas active medium for the CDC

was chosen to be argon doped with 3 and 4% of CO2 and CH4, respectively, with a

small admixture of H2O (for the same reason as in the VTX). With an operational

drift �eld of 620 V/cm the average drift velocity is about 34 �m/ns. The voltages

on the outer sense wires (1:58 kV) are raised with respect to the inner sense wires

(1:45 kV) to induce larger delay line signals, achieving 6 � 104 and 2 � 104 gas

gains, respectively. The CDC has z position resolution of about 2 mm, with r � '

resolution between 150{250 �m (the latter understandably poorer than that of the

VTX), and 90% e�ciency for resolving two hits is achieved at 2 mm hit separation.
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3.3.4 Forward Drift Chamber

As seen in Figure 3.3, the two Forward Drift Chambers (FDC's) cap the other

central detectors. The FDC's extend up to the End Calorimeter cryostats and

provide charged particle tracking coverage down to j�j � 3:1 (� � 5�). Each FDC

is made of three chambers: one � module for the measurement of azimuth (')

sandwiched by two � modules for the determination of the polar angle (�), see

Figure 3.7. The � module is one chamber with inner and outer radii of 11 and 61:3

cm, respectively, containing 36 sectors with full coverage in azimuth. Each sector

has 16 sense wires of about 50 cm in length directed radially from the beam to

facilitate measurement of ' coordinate. The anode wires are placed 8 mm apart

along the direction of the z axis and are staggered transversely by �0:2 mm.

Figure 3.7: Exploded view of one of the two FDC packages illustrating the � module
sandwiched by the two � modules.
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The � chambers consist of four mechanically separated quadrants with six

rectangular cells each. Each cell has eight anode wires transverse to the direction

of the beam. The sense wires are separated by 8 mm, as in the � chamber, and

are staggered. The � chambers also have delay lines identical in construction to

those in the CDC to measure the orthogonal coordinate. Because the �-layers are

four-fold symmetric, a 45� angle between the two � modules maximizes the position

resolution of the FDC. The FDC uses the same gas as the CDC and obtains similar

resolution and e�ciency values.

3.3.5 Central Detector Readout

For the �rst stage of signal processing, the signals from the chamber wires are led

into preampli�ers mounted on the ends of the chambers themselves. From there,

the signals are fed into analog pulse shaping cards located on the platform under-

neath the detector. Finally the signals are sent to 
ash analog-to-digital converters

(FADC's) located in the moving counting house. There the signals are sampled

and digitized at a rate of 106 MHz, starting at the beam crossing. If the event is

not accepted by the Level 1 trigger, the data are overwritten by the next crossing.

Otherwise, the data are compressed by eliminating the 
at portions of the signal

between the pulses (\zero suppression") and sent on to the Level 2 trigger.

3.4 The Calorimeter

The D� Calorimeters are the most important tool for jet detection. They provide

energy measurement for electrons, photons, and jets. Other important roles of

D� calorimetry are particle identi�cation and the determination of the Missing
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Transverse Energy (E/T ). Calorimeters are detector subsystems relying on total

absorption of the energy of the incoming particle. As a high energy particle enters

a su�ciently large block of matter, all of its energy will be degraded to the level

of detectable atomic ionization and excitations (and eventually heat, hence the

name|\calorimeter"). As energetic particles enter and traverse the calorimeter,

they initiate cascades, or showers, of particles caused by the secondary, tertiary, ...

interactions along the path of the primary particle. This phenomenon is perhaps

most vividly demonstrated in experiments detecting particle showers resulting from

the cosmic rays entering the earth atmosphere.

Particle showers in the same material originating from electromagnetic and

hadronic incoming particle are generally quite di�erent. For simplicity, let us fol-

low a high energy electron entering a medium. It is known that at energies above

a few tens of GeV, an electron loses energy primarily via emitting a photon, or

bremsstrahlung. So, the electron will bremm radiate many energetic photons. It is

also known that photons with energies well above the electron-positron pair produc-

tion threshold of about 1 MeV, will predominantly undergo e+e� pair production.

These secondary electrons and positrons will again radiate more photons, and so

on. The multiplicity of particles in such a cascade will continue to grow until the

average energy of the particles falls below the \critical energy", the energy at which

(in a given material) the energy loss due to the radiation equals the energy loss

due to ionization. After this, the development of the particle shower will quickly

cease. For a high energy electron, the mean distance in the medium, traversing

which it loses all but 1=e (e here being a base of natural logarithm) of its energy

due to bremsstrahlung, is called radiation length2 and is traditionally denoted by

2Radiation length X0 can roughly be parameterized as X0 � 180A=Z2 g/cm2 for a material
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X0. It is clear thatX0 sets the scale for the EM shower penetration into the medium

and therefore units of X0 are a convenient measure of the material thickness when

dealing with electrons or photons.

Upon entering a dense medium, hadronic particles can also initiate particle

cascades. Hadrons interact either via the electromagnetic or the strong force. In the

former case, the electromagnetic part of the hadronic shower will develop in much

the same way as described in the previous paragraph. Strong interactions on the

other hand take place between the hadron and nuclei, exciting them. De-excitation

of the nucleus can result in the production of protons and neutrons or mesons de-

pending on the amount of excitation. The atoms whose nuclei got excited to a lesser

degree, could emit photons and ionized electrons. All of these secondary particles

can in turn become sources for tertiary particles (and so on) creating a hadronic

shower, generally much more complex in its nature than its purely electromagnetic

counterpart.

A substantial amount of the incoming hadron energy also goes (with large


uctuations) into overcoming nucleon binding energy, and is therefore lost. As a

result, the calorimeter response to electrons is usually higher than to the hadrons

of the same energy. Somewhat analogous of X0 for EM showers, a nuclear interac-

tion length3 �, roughly corresponding to the depth at which the hadronic shower

maximum would appear, sets a length scale when dealing with hadronic showers.

Hence the thickness of the material with respect to such showers is usually given in

terms of �.

with atomic mass A and atomic number Z.
3Nuclear interaction length � can very roughly be parameterized as � � 35A1=3 g/cm2 for

materials of atomic mass A.
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Calorimeters are aimed at reconstructing the characteristics of the incoming

particle based on the precise identi�cation and measurement of the induced shower

in the material. Because of the di�erent intrinsic nature of electromagnetic (EM)

and hadronic showers in the medium, calorimeters are often designed with a speci�c

goal to achieve a better measurement of either type of shower.

Calorimeters can be used to measure not only the energy but also the spatial

position, the direction, and, in some cases, the nature of the primary particle. Their

performance, which generally improves with increasing incoming energy, is limited

both by 
uctuations of the elementary processes through which the original energy

is dissipated and by the techniques chosen to measure the �nal products of the

cascade process. Most often calorimeters measure the energy based on the electric

charge released through ionization in the active medium. Calorimeters are sensitive

to both charged and neutral particles, and the di�erences in its response to electrons,

muons, and hadrons can be used for particle identi�cation.

The depth necessary for full energy containment scales only logarithmically

with incoming particle energy, and uncertainties in the energy measurement are

governed by statistical 
uctuations of the number of particles in the cascade, N ,

and hence the relative energy resolution improves as 1=
p
N � 1=

p
E. Segmented

calorimeters allow precise measurements of the position and angle of the incident

particle. Fast time response of calorimeters allows operation at high particle rates,

and the pattern of energy deposition can be used for rapid online event selection

(triggering).

Sampling calorimeters, where several absorber and active layers are follow-

ing each other have become most popular. As the particles enter the sampling
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calorimeter, they interact with the array of absorber plates producing a shower of

particles and losing most of their energy. A small fraction of their total energy is

deposited in the gaps of active medium as its atoms are ionized. To collect liberated

electrons, an electric �eld is applied across the gap, and as the charges drift towards

and reach the anode, an electric signal is induced that can be detected and read

out. This signal is the calibrated to the incoming particle energy.

As mentioned earlier, usually the calorimeter response to electrons and

hadrons is di�erent. The ratio of the electromagnetic and hadronic responses de-

noted as e=h is an important characteristic of the calorimeter; usually e=h � 1:4.

Since such a di�erence in the two responses leads to degraded hadronic resolution

and signal nonlinearity, it is desirable to remove this e�ect, i.e. achieve \com-

pensation". Two general methods for doing so are: accurate determination of the

electromagnetic component of the hadronic shower with the idea of applying certain

weighting factors for the EM fraction at the time of reconstruction, and a careful

choice of the absorber material and its thickness to boost the purely hadronic com-

ponent of the shower. As it is shown below, the D� Calorimeters achieve nearly

full compensation employing the second general method by choosing uranium for

the absorber plates and selecting appropriate thicknesses for the plates as well as

for the active regions between them.

The D� calorimeter is a sampling design using liquid argon (LAr) as an

active medium. The choice of LAr was supported by its many desirable charac-

teristics. To name a few: LAr has unit gain; it is relatively dense (1:4 g/cm3); It

does not attach electrons easily, but has a relatively low ionization energy of about

� 24 Ev; it has high electron mobility (� 5 mm/�s at 1 kV/mm �eld strength); the
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Figure 3.8: General view of D� LAr calorimeters.

cost is relatively low; it is easy to obtain in a pure form and easy to purify; many

electromagnetic impurities are frozen out in LAr, and it allows long term stable

operation in a high radiation environment such as that at the Tevatron. The use

of LAr obviously necessitates a good cryogenics system to maintain the operational

temperature of 78 K for LAr (cooling to this temperature takes approximately 10

days), and containment vessels (cryostats) which unavoidably introduce regions of

uninstrumented material. In order to have access to the Central Detectors within

the calorimeter cavity, more than one vessel is necessary. Therefore, D� calorime-

ters are housed in three separate double-walled stainless steel cryostats, one central

and two end-caps, the latter two being mirror images of each other. A general

view of the D� LAr calorimeters is shown in Figure 3.8. The boundary between
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the Central Calorimeters (CC) and the End Calorimeters (EC) is chosen to be

perpendicular to the beam line. This design was shown to be superior for E/T re-

construction compared to one in which the EC's nest within the CC shell with a

boundary roughly parallel to the beam line. Excellent containment and hermeticity

are achieved with the CC providing coverage for roughly j�j < 1 and the two EC's

extending it to j�j � 4. The number of nuclear absorption lengths (�) is typically

7 for the CC and 9 for the EC.

G10 Insulator
Liquid Argon

Gap
Absorber Plate Pad Resistive Coat

Unit Cell

Figure 3.9: Schematic view of the D� calorimeter unit cell.

The CC and EC are actually made of three types of modules: an electro-

magnetic (EM) section of modules with relatively thin uranium absorber plates, a

�ne hadronic (FH) section of modules with thicker uranium plates and a coarse

hadronic (CH) section of modules with thick copper and stainless steel plates in the

CC and EC, respectively. A schematic view of a D� unit calorimeter cell, regardless

of its position in the calorimeters and the type of calorimetry (EM or hadronic), is
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Figure 3.10: Side view of calorimeter trigger towers.

shown in Figure 3.9. It consists of a grounded metal absorber plate and a signal

board plated with a coat of resistive epoxy on each surface with a copper plane on

the inner side kept at +2{2:5 kV potential creating an electric �eld drift across the

2:3 mm LAr gap, resulting in a drift time for electrons across this gap of about 450

ns. While all calorimeters are immersed in LAr, di�erent absorber materials are

used in di�erent locations. The EM modules use 3 and 4 mm thick plates of nearly

pure depleted uranium in the CC and EC, respectively. The absorber plates for the

FH modules are made of 6 mm thick uranium-niobium (2%) alloy, while the CH

modules use even thicker (46:5 mm) plates made of copper (stainless steel) in the

CC (EC).

The actual size of the readout cells is set by the typical parton jet size in
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� � ' space of �R =
q
(��)2 + (�')2 � 0:5. However, the segmentation is �ner

than this in the transverse direction and is useful for probing jet shape, and the

longitudinal (in depth) segmentation is desirable since longitudinal shower pro�les

can be used to distinguish electrons from hadrons. The transverse size of the readout

cells are thus chosen to be in the order of characteristic transverse shower sizes in

the EM and hadronic modules of about 1{2 and 10 cm respectively. Multi-layer

in-depth segmentation is pseudoprojective in its nature, meaning that although cell

centroids lie on the rays of constant pseudorapidity drawn from the geometrical

center of the D� Detector (corresponding to z = 0), the actual cell boundaries are

perpendicular to the absorber plates. The cells electronically ganged along the rays

of constant � form D� calorimeter \towers" of �� � �' transverse segmentation

of 0:1� 0:1 radians, providing excellent shower position resolution. The deviations

from this segmentation in certain parts of the calorimeters are discussed in the

following sections. The pseudoprojective nature of the D� calorimeter towers is

illustrated in Figure 3.10.

A side view of the D� calorimeter modules in CC and EC is shown in

Figure 3.11 along with the Massless Gaps and the Intercryostat Detectors (ICD's),

the latter are two needed to populate otherwise uninstrumented transitional region

between central and end-cap cryostats. More detailed description of these di�erent

types of calorimeter modules follows.

3.4.1 The Central Calorimeter

The Central Calorimeter (CC) is composed of three concentric rings of electromag-

netic (EM), �ne hadronic (FH), and coarse hadronic (CH) calorimeters. The EM
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ring is made of 32 azimuthal modules, while the the FH and CH rings have 16

azimuthal modules. To avoid azimuthal coincidence of intermodule gaps from dif-

ferent rings, the EM, FH, and CH modules are o�set in ' so that no projective ray

encounters more than one such gap.

The cells in the EM modules are read out in four longitudinal layers

(ganged) which have the thickness of 2:0, 2:0, 6:8 and 9:8 radiation lengths (X0) in

depth. Thus the third EM layer is located where the EM shower maximum is ex-

pected to appear. Therefore, to achieve a better transverse measurement of the EM

shower maximum, the third layer has �ner transverse segmentation (0:05 � 0:05)

than the usual (0:1 � 0:1) \granularity" in the � � ' space. A full EM module  

ICDs

Massless Gaps

CCCH

CCFH

CCEM

ECOH

ECMH

ECIH

Figure 3.11: Side view of calorimeter modules, intercryostat detectors, and massless
gaps.
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comprises 20:5X0 and 0:76� and weighs 0:6 tons, requiring about 10; 000 readout

channels.

The FH modules have cells longitudinally ganged in three layers of approx-

imately 1:3, 1:0, and 0:9�, with the hadronic shower maximum expected to appear

in the �rst FH layer. It has 3500 readout channels and a full ring weighs about 8:3

tons.

The CH modules contain just one depth segment of about 3:2�. The CH

modules weigh about 7:2 tons and has 770 readout channels. The total weight of

the CC modules and their support structure is 305 tons, not counting the additional

26 tons of LAr needed to �ll the cryostat.

3.4.2 The End Calorimeters

The End Calorimeters (EC) are similar to the CC. There are two mirror-image

EC's containing four types of modules as shown in Figure 3.11, each EC with an

overall weight of about 238 tons. The single EC electromagnetic module (ECEM)

is divided into four read out sections of 0:3, 2:6, 7:9, and 9:3X0 with outer radii

varying between 84 and 104 cm and inner radius of 5:7 cm. The material in front

of the �rst ECEM layer brings its thickness to about 2X0, and the third layer,

corresponding to the expected location of the EM shower maximum is more �nely

segmented transversely, in the same way as in the CC. Each ECEM module weighs

about 5 tons and provides 7488 signals.

There is also only one Inner Hadronic module (ECIH) with four �ne
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hadronic readout sections each about 1:1� thick, and one coarse hadronic read-

out segment of 4:1� in depth. The FH absorber plates are made of uranium, while

the CH plates are stainless steel. The full ECIH module weighs 28:4 tons and has

5216 readout channels.

Outside the ECEM and ECIH, there are concentric rings of 16 Middle and

Outer Hadronic (ECMH and ECOH) modules. Each ECMH module of total weight

of 4:3 tons and 1856 readout signals has four FH readout sections with uranium

plates each about 0:9� deep, and one 4:4� thick CH section with stainless steel

plates. The ECOH modules have three CH readout layers with stainless steel plates

at about 60� with respect to the beam line (see Figure 3.11), and have the total

longitudinal depth of about 4:4�.

All EC calorimeter modules have � � ' segmentation of 0:1 � 0:1, except

that very close to the beam line � j�j > 3:2, where the physical size of the cells

of this size would get tiny, the transverse segmentation is increased to 0:2� 0:2 in

� � ' space.

The variation in the thickness of the D� calorimeters in terms of integrated

nuclear interaction lengths, �, can be read o� Figure 3.12 which in addition shows

the thickness of the muon system (to be discussed later).

3.4.3 Massless Gaps and Intercryostat Detector

As already mentioned, the intercryostat gap, roughly de�ned by 0:8 < j�j < 1:4, is

instrumented with the Intercryostat Detectors (ICD's) supplemented by the Mass-

less Gaps (MG's), as seen in Figure 3.11. The ICD's are a set of scintillation
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Figure 3.12: Calorimeters and muon system interaction lengths as a function of �.

counters mounted on the front surface of the EC cryostats. Each ICD consists of

385 scintillator tiles of size 0:1�0:1 in ��', thereby matching the LAr calorimeter
segmentation. The MG detectors are mounted inside the CC and EC cryostats.

They are copper readout boards identical to single-cell calorimeter readout pads.

They provide additional sampling of the showers leaving the CC cryostat and enter-

ing the EC cryostat. Together, the ICD's and MG's provide good approximation to

the standard D� sampling of the electromagnetic showers in more uniform sections

of the calorimeter.
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3.4.4 Calorimeter Readout

The signals induced on the readout pads are pulses with widths on the order of 450

ns. These signals are led out through four ports (feedthroughs) in the cryostats to

charge sensitive preampli�ers mounted on top of the cryostats. From the pream-

pli�ers, the signals are led to base line subtractor (BLS) modules located in the

platform below the detector. The BLS modules perform analog shaping and split

the signal into two paths.

The �rst path is used for triggering. The signals from all the �ne hadronic

cells within a tower are summed; the signals from the electromagnetic cells are

similarly summed. These signals then form the input to the Level 1 calorimeter

trigger.

The second path is used for the data readout. The incoming signal is

sampled just before the beam crossing and again 2:2 �s later. The di�erence between

these two samples is a DC voltage which is proportional to the total collected charge.

This di�erence is sent to the ADC's where, if the event is accepted by the Level 1

trigger, the signals are digitized and sent on to the Level 2 trigger. In addition, the

zero-suppression process eliminates the cells with no or very little energy deposited

in them. This process minimizes the readout time and reduces the size of the data

to be stored.

3.4.5 The Calorimeter Performance

The D� calorimeter module prototypes as well as the actual modules have been

tested in many di�erent ways using the beams of particles of known energies as well
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as the cosmic rays. Among important characteristics of the calorimeter performance,

the ones often quoted are their response linearity as a function of incoming energy

and their energy resolution. For instance, the D� ECEM/ECIH modules have been

subjected to extensive tests with electron and pion beams in the energy range of

10{150 GeV. The response to both electrons (above 10 GeV) and pions (above 20

GeV) was found to be linear with beam energy to within 0:5%.

The sampling calorimeter fractional energy resolution �E=E is expected to

improve as 1=
p
E simply because it is dominated by the statistical 
uctuations

in the number of sampled charged tracks, which is directly proportional to the

incoming energy. However, contributions to the resolutions arising from the noise

become increasingly important at low energies, and the resolution may not improve

with energy as quickly as the sampling term alone would predict because of the

appearance of the \constant term", usually due to the dead material in front of

the calorimeter and other calibration errors. The fractional energy resolution of

the calorimeter traditionally is therefore parameterized as the sum in quadrature of

these three terms:

�
�E
E

�2
=
N2

E2
+
S2

E
+ C2 ;

where N represents contribution from noise, S is the sampling term, and C is a

constant o�set term. Test beam studies show that the calorimeter energy resolution

is approximately 15%=
p
E for electrons and 50%=

p
E for pions. The calorimeter

energy resolution for jets is measured from the in situ collider data. The method

used for jet energy resolution measurement, and its e�ect on the jet cross section,

are discussed in chapter 9.
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During muon beam tests, it had been determined that a minimum ionizing

particle (MIP), crossing the central calorimeter, would liberate approximately 104

electrons in each gap and lose a total energy of � 2 GeV. Moreover, the ratio of

electron to pion response (e=� ratio) was measured in the combined ECEM and

ECIH modules to fall from about 1:11 at 10 GeV to about 1:04 at 150 GeV. The

equivalent e=h ratio value is about 1:08, demonstrating the nearly compensating

nature of the D� calorimeters.

3.5 The Muon Spectrometer

Figure 3.13: Elevation view of the D� Detector including the muon system.

Although very similar to the electron in quantum numbers, the muon is much

heavier and therefore passes through the calorimeters as a MIP particle. Therefore,
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the muon spectrometer, a set of saturated iron magnets and proportional drift tube

(PDT) chambers, is placed right outside the calorimeters to determine the momenta

and trajectories of muons emerging from pp interactions. The muon system may also

be used in jet analysis to detect cosmic ray shower contamination, and to correct for

energy leakage from the back of the calorimeters (punchthrough), especially in cases

of jets with high transverse momentum. The muon system provides wide coverage

in polar angle �, down to approximately 3� degrees from the beam line. As shown

in Figure 3.13, there are two main muon subsystems, described below.

3.5.1 The Wide Angle Muon Chambers

Figure 3.14: Extruded aluminum section for B and C layers. The A layer has four
decks of cells instead of three.

The Wide Angle Muon System (WAMUS) measures muons within (j�j < 2:5).

There are three WAMUS toroid magnets: the central (CF) toroid, covering j�j < 1,

and the two end (EF) toroids, covering 1 < j�j < 2:5. The CF region toroid is

a meter thick square iron magnet centered on the beam line, surrounding the CC
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calorimeters, weighing about 2000 tons. Twenty coils of 10 turns each carry a

current of 2500 A to generate internal de
ecting magnetic �eld of 1:9 T; the fringe

�eld near the interaction region is about 0:01 T. The two EF toroids cap the CF

magnet from both ends, completely enclosing the calorimeters. They are perforated

by the MR (Main Ring), as are the calorimeters and the cryostats. The EF toroids

are large iron magnets each weighing about 800 tons. A magnetic �eld of 2 T is

created in the iron by a 2500 A current 
owing in eight coils of eight turns. The

magnetic �eld from all toroids has the same direction, bending the muons in the

r � z plane.

The PDT's are formed from aluminum extrusion unit cells, as shown in

Figure 3.14. The copper-clad Glasteel (polyester and epoxy copolymer sheets with

chopped glass �bers) cathode pads are inserted into the top and bottom of each cell

and the 50 �m gold-plated tungsten anode wires are held near the center of the cell.

The aluminum extrusion is grounded, while the cathode pads and the anode wires

are kept at +2:3 and +4:6 kV potential, respectively. The chambers are operated

with a gas mixture of Ar(90%)CF4(5%)CO2(5%) for which a typical drift velocity is

about of order 6:5 cm/�s. A total of 164 individual chambers are deployed in three

layers: the A layer before the iron toroids, and the B and C layers after the magnets

(see Figure 3.13). There are 4 decks of cells in A layer chambers, and 3 in B and

C layer chambers. The decks of cells are staggered so as to break the left{right

ambiguity (see Figure 3.14). The muon direction is measured before and after the

magnets, and the momentum is obtained from the bending angle. The hit resolution

is about 3 mm along the wire direction and 700 � 900 �m along the drift plane.

The muon fractional pT resolution is �p=p � 20% due to multiple scattering at low

momenta and is limited by the bend coordinate resolution at higher momenta.
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3.5.2 The Small Angle Muon Chambers

The Small Angle Muon System (SAMUS) is designed to provide coverage for the

higher pseudorapidity range of 2:5 < j�j < 3:6. The SAMUS magnets are relatively

smaller and are embedded in the WAMUS end toroids within a 2 m square hole

centered on the Tevatron beam pipe. They each weigh roughly 32 tons. Two coils

of 25 turns each carry current of 1000 A, generating a 2 T magnetic �eld in the

same direction as that of the WAMUS magnets. SAMUS is composed of three

stations: A, before the magnets, and B and C after the magnets. Each station

consists of three doubled planes of cylindrical proportional drift tube chambers.

They are oriented in x y and u directions (u is at 45� with respect to x and y

directions). SAMUS PDT's are stainless steel tubes which are grounded and the

anode is a 50 �m gold-plated tungsten wire kept at +4:0 kV potential. The chamber

gas used is CF4(90%)CH4(10%) with an average drift velocity of 9:7 cm/�s and a

maximum drift time of 150 ns. The hit resolution is approximately 400� 500 �m.

The fractional pT resolution is dominated by multiple scattering and is about 20%

for pT less than 10� 15 GeV.

3.6 The Trigger and Data Acquisition Systems

The bunches of protons and antiprotons are brought to a collision intersection in the

center of the D� detector about 300 thousand times every second corresponding

to a readout rate of 300 kHz. Equivalently, and technically more precisely, the

beam crossings take place every 3:5 �s at the Tevatron. Since the cross sections

for the most interesting and rare physics processes are small, most of these beam
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crossings result in events of limited interest. Therefore, a system is designed to

quickly analyze events in real time and to select only those with an interesting

signature. This system, known as the \trigger", is an essential part of the Data

Acquisition system in hadron{hadron collisions.

Triggering at D� is done in a multi-stage process, consisting of di�erent

trigger levels, increasing in sophistication and time requirements with each higher

level. The ultimate goal of the trigger is to reduce the event rate to that at which

events can be written to tape (bandwidth of about 2 Hz), by accepting interesting

events, and at the same time rejecting background events. The following description

of di�erent trigger levels puts particular emphasis on calorimeter triggering. Jet

triggers will be discussed in chapter 4.

3.6.1 The Level � Trigger

The Level � trigger is the �rst hardware trigger stage. Its main purpose is the

detection of an inelastic pp collisions. The Level � detector is made of two sets of

scintillating hodoscopes, each mounted on the front surface of the end-cap cryostats,

perpendicular to the beam line, providing full coverage for 2:2 < j�j < 3:9 and par-

tial coverage for 1:9 < j�j < 4:3. It measures the di�erence in the time arrival

of particles from the interaction point to the two hodoscopes with excellent time

resolution in the order of 100 ps. Coincidences near this resolution signal the pres-

ence of inelastic collisions with nearly 100% e�ciency. The precise measurement of

the time of 
ight di�erence also allows the determination of the z position of the

interaction vertex with about 3:5 cm resolution. By measuring the cross section

for non-di�ractive inelastic pp collisions and employing the time between the beam
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crossings, the Level � detector also provides a very important measurement of the

instantaneous luminosity, one of the major ingredients used in the determination of

the integrated luminosity which sets the scale of any cross section measurement.

If a Level � trigger occurs the event is passed on to the higher trigger levels

for further analysis. It signi�cantly reduces the beam crossing rate to a much more

manageable rate of about 17 kHz. It must be noted that not all the data recorded

by D� is subjected to the Level � requirement. Notable exceptions are di�ractive

events, some of which cannot be triggered by Level �, and the events intentionally

recorded without a requirement of inelastic collision (so called ZERO BIAS data),

very useful for certain systematic studies.

3.6.2 The Level 1 Trigger

The Level 1 Trigger Framework, a two dimensional network of AND-OR logic cir-

cuits with 256 inputs and 32 outputs (also known as trigger bits), accepts infor-

mation from the Level � trigger, the Level 1 Calorimeter trigger, and the Level 1

Muon trigger. Each trigger bit is pre-programmed to require a logical combination

of selected AND-OR input terms. The goal of the Level 1 trigger is to �lter out

uninteresting events within a very short time of the beam crossing (3:5 �s). This

time limitation does not allow the use of the tracking information from the Central

Detectors in the Level 1 trigger decision making process.

Level � supplies the z position of the interaction vertex. The Level 1

calorimeter trigger electronically sums up analog signals in the trigger towers|

regions de�ned by 0:2�0:2 solid angle in ��' space|and compares it to thresholds

set by the user. The sums are done over all the electromagnetic and �ne hadronic
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layers of the calorimeter towers with the range j�j < 4:0. It thus identi�es elec-

tron/photon and jet candidates and also measures the missing transverse energy.

The Level 1 Muon trigger provides muon hit information. Based on this information

alone, the Level 1 Trigger Framework checks if the event satis�es one or more of

the 32 available trigger requirements. If it does, the event is passed on to the next

trigger level, otherwise it is discarded. Level 1 further reduces the event rate to

about 200 Hz.

Despite careful design of the requirements for each trigger bits, some of

them still are \�red" more often than acceptable for passing to the next trigger

level. These trigger bits are then prescaled, meaning that only one out of a �xed

number of passed events will actually pass the Level 1 trigger (\divide by N"). Some

of the Level 1 muon trigger bits require more complex selection criteria based on

muon tracks in order to reduce the corresponding trigger rates and also provide a

cleaner event sample. For this, the simple muon reconstruction available in the Level

1 is not su�cient, and the candidates are passed to an intermediate trigger level

(Level 1:5) for further analysis. However, such detailed reconstruction sometimes

can not be achieved within the beam crossing time, introducing a detector dead

time while all systems await decision.

3.6.3 The Level 2 Trigger

The Level 2 trigger and the Data Acquisition (DAQ) systems are closely intertwined.

The information from Level 1 is passed on to Level 2, which is a farm of 48 microVax

VS4000-60 processors working in parallel. The interesting event candidates are

further reconstructed using the information from the entire D� detector, focusing
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on the areas identi�ed in Level 1. In Level 2, there are 128 software �lters connected

to the 32 trigger bits of Level 1. Similar to Level 1, the trigger bit prescale values

can be set for Level 2 �lter bits as well. In the case of the calorimeter �lters, for

instance, the data are unpacked in the region 
agged by the Level 1 trigger. Level

1 towers are used as seeds for the jet �lter. A jet �nding algorithm sums all the

trigger towers within a cone of radius 0:7 in � � ' space. The events with jet-like

energy clusters above various thresholds are then sent to the host computer. The

Level 2 trigger reduces the event rate to about 2 Hz.

As is clear from the above discussion, the data collection e�ciency depends

crucially on the optimization of the entire trigger system. Trigger requirements for

identifying physics events of interest are, therefore, carefully designed, tested, and

implemented. Various sets of trigger requirements comprise trigger lists which are

downloaded from the database during the regular data taking periods. In certain

circumstances, due to high luminosities and loose trigger requirements, more events

may be accepted by the triggers than can be handled by the system's bandwidth.

This results in a dead time for the entire detector, the state speci�cally dubbed as

front-end busy or Level 2 disable, depending on whether it happens in the Level 1

or the Level 2 trigger.

3.7 The O�ine Data Processing

During Run 1, events were primarily written to two data streams. The ALL stream

contained all events sent to the host and was directly written to tape. The EX-

PRESS stream contained only events from a small subset of �lters which was of the

most interest for rapid analysis (mostly top and W/Z triggers). EXPRESS stream
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events were copied to the express line, where they were immediately reconstructed

and rapidly made available for analysis. For Run 1, events were recorded at the

rate of 2{3 Hz, with about 10% of the events going to the EXPRESS stream.

Each day, the raw data tapes written by the online system were collected

and transported to the Feynman computing center. There, the raw data were recon-

structed on a farm of Silicon Graphics machines. The product of the reconstruction

was two sets of �les. STA's contain the raw data of the event augmented with the

results of the reconstruction, and are about 600{1000 kilobytes per event. DST's

contain only the reconstruction results for high-level objects, such as electrons,

muons, etc. They are about 15 kilobytes per event. Most analyses start with the

DST's. STA's are usually required only when one wants to re-reconstruct an event,

or to scan an event in detail with the event display.

The reconstructed events were further split into a set of o�ine streams.

This was done on the basis of �lter procedures supplied by the various physics

groups, which were designed to select the events of most interest. The �ltered event

streams were then made available to users on the D� �le server.
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CHAPTER 4

THE DATA SAMPLE AND RECONSTRUCTION

This analysis is based on Run 1B data (runs 72250{93115) collected from December

1993 through July 1995 with four inclusive jet triggers: Jet 30, Jet 50 and Jet Max

versions 8{10, and Jet 85 versions 9 and 10 only, resulting in integrated luminosi-

ties for these �lters of 0:36, 4:7, 93 and 55 pb�1 respectively, as derived from the

Production Data Base (PDB) [46]. The data have been reconstructed using Reco

version 12 [47] with the standard D� �xed cone jet-�nding algorithm [48] for jet

cone sizes of 0:3, 0:5, 0:7 and 1:0. This study is limited to jets with cone size of 0:7.

After the reconstruction, the data have been ntupled in a standard multi-cone D�

QCD format to facilitate easier and faster access. In what follows, we discuss in

more detail jet triggers, relevant topics of general event reconstruction in D� with

Reco v. 12 (such as the jet and the event ~E/T reconstructions), and the corrections

we apply to the reconstructed QCD events.

4.1 The Inclusive Jet Triggers

As discussed in chapter 3, the triggering in D� is done in a multi-stage system

consisting of three basic trigger levels. The inclusive jet triggers exist in the Level 1

and Level 2. In the hardware trigger level, the Level 1, jet triggers require a desired

number of trigger towers (0:2 � 0:2 in � � ' space) or large trigger tiles (4 � 8 in
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Name Runs Level 1 (GeV) Level 2 (GeV) QCD bit

Jet Min all
1 jet with

ET > 3

1 jet with

ET > 20
2

Jet 30 all
1 tile with

ET > 15

1 jet with

ET > 30
40

� 77824
1 tile with

ET > 35

Jet 50 77825 � runs � 85226
1 tile with

ET > 25

1 jet with

ET > 50
4

� 85227
1 tile with

ET > 15

Jet 85 � 77824
1 tile with

ET > 60

1 jet with

ET > 85
5

� 85227
1 tile with

ET > 35

� 77824
1 tile with

ET > 60

Jet Max 77825 � runs � 85226
1 tile with

ET > 35

1 jet with

ET > 115
6

� 85227
1 tile with

ET > 45

Table 4.1: Run 1B inclusive jet trigger con�gurations.

trigger towers, i.e. 0:8� 1:6 in ��') to have transverse energy (ET ) above certain

threshold value. If Level 1 accepts an event, it passes information onto Level 2, also

providing it with a list of Level 1 trigger towers. When large trigger tiles are used

in Level 1, it then provides to Level 2 the ET weighted centroid positions of the

tiles.
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In the software �lter level, the Level 2, jet-like clusters are reconstructed

starting from the \seed" tower list from Level 1. In addition to the threshold re-

quirement in Level 1, there is also a seed threshold requirement in Level 2. However,

this is somewhat redundant as the seed threshold is always lower than the Level 1

threshold and thus does not a�ect Level 1 trigger. In Level 2, around each trigger

seed centroid, a box of 1:4 � 1:4 in � � ' is drawn. The ET weighted centroid of

this box is taken as a Level 2 jet center. All trigger towers not already claimed by

other Level 2 jets are then summed up within a �xed cone radius of 0:7 in � � '

drawn from the Level 2 jet centroid. If Level 2 jet passes a preset threshold for the

designated jet �lter, the corresponding trigger bit is set on, or is \�red", and the

event is accepted.

Level 2 single jet �lters used in this inclusive jet cross section analysis are:

Jet 30, Jet 50, Jet 85 and Jet 115, where, by convention, the number in the jet

trigger name indicates Level 2 trigger ET threshold in GeV. The highest (lowest)

ET jet trigger is often called Jet Max (Jet Min). In the studies of the jet energy

resolutions we also use the Jet 20, or Jet Min, trigger for determining the resolutions

at the lowest ET point, thereby better constraining a �t to the standard resolution

parameterization. Table 4.1 summarizes Level 1 and Level 2 requirements for all

the inclusive jet triggers used in this analysis [49].

Jet triggers are not fully (100%) e�cient in all ET and � ranges. The

coarse hadronic (CH) layers, Massless Gaps (MG's), and Intercryostat Detectors

(ICD's) are not included in Level 1 trigger towers. Moreover, there are smearing

e�ects related to the vertex measurement in Level � and the jet energy resolu-

tions. A combination of these e�ects may distort jet ET in Level 1 and Level 2 in
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such a way that a real jet may fall below the trigger thresholds. As a function of

jet ET , the jet triggers are ine�cient below their ET thresholds but they become

nearly 100% e�cient, or \turn on", very quickly thereafter. On average, triggers

turn on slightly sooner in the End Calorimeters (EC's) compared to the Central

Calorimeters (CC's), but, on the other hand, their turn on curves are degraded in

the intercryostat region (ICR). The jet trigger e�ciencies have been measured in

the dedicated studies [49]. The turn on ET thresholds for the four single jet �lters

used in this analysis have been additionally checked by taking the ratios of the cross

sections from more restrictive to less restrictive triggers as a function of ET in the

same way as in reference [46]. In the measured inclusive jet cross section, the single

jet triggers are used in the ET ranges where they are at least 99% e�cient.

4.2 Jet De�nition

Jet de�nition is non-trivial issue both theoretically and experimentally. As was

discussed in chapter 2, instead of the usual particle four-momentum, a preferred set

of jet kinematic variables is its transverse momentum (ET ), azimuthal angle ('),

pseudorapidity (�), and mass (m). In theoretical calculations, it is important that

a jet is de�ned in such a way that no divergences appear in physically observable

quantities. That is to say, sums over �nal state partons or particles belonging to a

jet should be infrared safe. If a jet is composed of n objects, then the theoretically

preferred de�nition of overall jet kinematic variables is that of the \Snowmass"
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accord [50]:

the sum ET : ET =
X
i

ET;i ;

the ET weighted � : � =

X
i

ET;i �iX
i

ET;i

;

the ET weighted ' : ' =

X
i

ET;i'iX
i

ET;i

;

(4.1)

with the mass of the jet set equal to zero. Furthermore, in next-to-leading or-

der (NLO) QCD it is necessary to implement a scheme for assigning partons

to jets. A convenient measure of separation in � � ' space is the distance

�R =
q
(��)2 + (�')2, with �� and �' being the \distances" in the correspond-

ing angles between the two objects. One way to de�ne a jet then is to assign to it

all the partons within some chosen distance R from the jet centroid, where the jet

direction can be calculated using Eqs. (4.1).

In general, such a prescription cannot be used for the experimental de�ni-

tion of a jet without some modi�cations. In D�, historically, a scheme somewhat

di�erent from the Snowmass accord has been used. We will refer to this scheme

as the D� de�nition or algorithm. It was shown in dedicated studies that such a

de�nition gave jet kinematic variables closer to those of the parent partons. Al-

though we de�ne, �nd, and reconstruct experimental jets using this standard D�

algorithm, we then apply corrections (to be discussed later on in this chapter) to

obtain jets that would have been reconstructed with the Snowmass accord. Putting

experimental and theoretical jets on the same footing also makes comparison to

theoretical predictions more straightforward.
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The primary tool for identifying and measuring jets in D� is the LAr{Ur

Calorimeters. Experimental jets used in this analysis are de�ned and reconstructed

using the D� �xed-cone jet �nding algorithm with a cone size of 0:7 in ��' space1.

It is an iterative algorithm which starts from the calorimeter towers (see page 108)

that have ET 's greater than 1 GeV. The ��' \granularity" of the towers is 0:1�0:1
except at highest pseudorapidities where the calorimeter segmentation is coarser, as

discussed in chapter 3. Starting from the highest ET calorimeter tower, preclusters

of contiguous cells are formed around them out to a radius of 0:3 in � � ' space.

All towers falling within preclusters are removed from the original list of available

towers. The ET weighted centroid of the precluster is calculated and a cone of

radius R (for this analysis, R = 0:7) is drawn from there.

A new ET weighted center of the candidate jet is then found from all towers

within radius R. This process of �nding the jet � � ' centroid is repeated until

a stable solution of the jet direction is found. This is usually achieved in three to

four iterations. The found jet must have ET greater than 8 GeV. If two nearby jets

overlap, they are either split into two jets or merged into one. They are merged if

more than 50% of the ET of the jet with the smaller ET is contained in the overlap

region; otherwise the two jets are split into two distinct jets, the energy of each

calorimeter cell in the overlap region is assigned to the nearest (in � � ') jet and

the jet direction is recalculated. It is worth noting that the jet ET threshold of 8

GeV is applied before possible splitting or merging of jets in the event. Therefore,

two jets with ET 's lower than 8 GeV cannot be combined to create a single jet with

1An alternative, successive combination algorithm, called the kT algorithm [51], is also devel-
oped in D� and is used in some analyses. Both algorithms have their strengths and weaknesses,
especially from the experimental point of view, and complement our current understanding of
hadronic jets.
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ET > 8 GeV. Furthermore, either or both jets resulting from splitting may have

ET 's less than the threshold value of 8 GeV.

Jet kinematic variables are calculated by summing over all calorimeter tow-

ers inside a jet. For each calorimeter tower, the basic experimentally measured

quantities are: energy (Ei), azimuthal ('i) angle and polar (�i) angle. Jet energy

is the sum over all towers belonging to the jet:

E =
X
i

Ei : (4.2)

Each tower is assumed to be massless and, consequently, pi = pin̂ � Ein̂, where n̂

is the unit vector in the direction of the tower centroid from the interaction point.

Because of this massless approximation we often talk of jet energy and momentum

interchangeably, and even introduce the x, y, and z, components of jet energy. The

three components of jet momentum or energy are thus de�ned in the following way:

Ez = pz =
X
i

Ez;i =
X
i

pz;i �
X
i

Ei cos �i ;

Ex = px =
X
i

Ex;i =
X
i

px;i �
X
i

Ei sin �i cos'i ;

Ey = py =
X
i

Ey;i =
X
i

py;i �
X
i

Ei sin �i sin'i :

(4.3)

It should be noted that even though towers are massless, the jet de�ned in this way

still acquires non-zero invariant mass

M =
q
E2 � p2 ; (4.4)

where jet energy is given by Eq. (4.2) and its three-momentum is jpj =q
p2x + p2y + p2z, with the components de�ned in Eq. (4.3).

In jet physics, we often work with the transverse energy of a jet which

should clearly be distinguished from the jet transverse momentum. Jet transverse
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energy (ET ) is the sum of the transverse energies of all jet-associated towers:

ET =
X
i

ET;i =
X
i

Ei sin �i ; (4.5)

while the jet transverse momentum (pT ) is the transverse component of its three-

momentum p, or:

pT =
q
p2x + p2y �

vuut X
i

px;i

!2

+

 X
i

py;i

!2

; (4.6)

which is clearly di�erent from the jet ET as de�ned in Eq. (4.5). The di�erence

between ET and pT of a jet is due to its �nite opening angle and can be very large

for wider jets. On the other hand, with increasing Lorentz boost of a jet, it becomes

more collimated and in this limit ET and pT become nearly equal. As long as one

uses the same quantity in experimental reconstruction and theoretical calculations,

the particular choice of ET or pT does not matter in most physical quantities. For

historic reasons, we use jet ET more often than pT .

Finally, jet angles are found from the components of p:

' = tan�1
 
py
px

!
� tan�1

�
Ey

Ex

�
;

� = tan�1
 
pT
pz

!
� tan�1

0
@
q
E2
x + E2

y

Ez

1
A ;

(4.7)

The pseudorapidity (�) is then derived from the polar angle (�) in the massless

limit:

� = ln

"
cot

 
�

2

!#
: (4.8)

The event reconstruction for this analysis was performed with the D� reconstruction

package Reco version 12. The Reco package, along with other pattern recognition

software, contains the �xed cone jet �nding algorithm just described. Jets were



132

reconstructed for cone sizes of 0:3, 0:5, 0:7, and 1:0, but the analysis presented

here is based on R = 0:7 only. It has been shown in Monte Carlo studies that the

jet reconstruction e�ciency is 100% for jets with ET 's greater than 20 GeV at all

pseudorapidities [33].

4.3 Missing Transverse Energy

The Reco package also provides us with an important \global" quantity|the miss-

ing transverse energy vector ( ~E/T ) in the event. The D� hermetic calorimeters, with

nearly full solid angle coverage, are designed to give precise measurement of ~E/T .

~E/T is de�ned in the following way:

~E/T =

 
�

cellsX
i

Ex;i| {z }
E/x

; �
cellsX
i

Ey;i

!
| {z }

E/y

;
(4.9)

where the sums are over all calorimeter cells including the ICD's and MG's [47].

The event missing transverse energy, E/T , is simply the magnitude of ~E/T . The

azimuthal direction of ~E/T is de�ned as:

'E/T
= tan�1

 
E/y
E/x

!
: (4.10)

In ideal calorimeters, a non-zero missing transverse energy indicates the

presence of non-interacting particles in the event, such as high pT neutrinos. Also,

high pT muons traverse the calorimeters as minimum ionizing particles (MIP), de-

positing only 2{3 GeV of their energy. The E/T measurement is also a�ected by the

electronic and uranium noise and the calorimeter energy and position resolutions.

Precise measurement of ~E/T is crucial in searches for new phenomena with signa-

tures of nonzero missing transverse energy. In most QCD events, however, rather
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small values of E/T are expected.

4.4 The Treatment of Hot Cells

The appearance of calorimeter cells with spurious energies and unusually high fre-

quencies of occurrence is an undesirable, but to some degree unavoidable, e�ect.

Such cells are commonly referred to as \hot" calorimeter cells or channels. The

sources of hot cells range from electronic noise and hardware failures in the calorime-

ter to non-collider physics processes always present at the Tevatron. Such bad or

hot cells must be identi�ed and removed from the data samples.

4.4.1 Anomalous Isolated Deposit Algorithm (AIDA)

Despite the existing Calib [52, 53] and Chot [53, 54, 55] utilities, the number of

hot cells observed during Run 1A was still high. Therefore, for Run 1B, D� was

forced to introduce another hot cell suppressor|AIDA.

AIDA is applied event by event with the purpose of removing true hot

calorimeter cells (THCC). First it makes a list of candidate THCC's whose trans-

verse energies Ecand
T > 10 GeV, and orders them in ET , starting with the highest

ET candidate cell. Then for each of these candidate cells AIDA calculates the ratio

of the average transverse energy of the longitudinal neighbors (i.e. adjacent cells

with lower and higher layer numbers) hET i to the Ecand
T . This ratio is expected to

be close to one for cells inside a cluster of energy and small for isolated hot cells.

Therefore, AIDA identi�es a candidate cell as a THCC if this ratio is:

hET i(longitudinal neighbors)
Ecand
T

< 0:05 : (4.11)



134

However, sometimes the candidate cell does not have both longitudinal neighbors

physically present in the calorimeter. In such cases ET of either of the neighbors

that is physically present is taken instead of the average to calculate the ratio in

Eq. 4.11. To summarize, hET i in Eq. 4.11 is generally de�ned as:

hET i =

8>><
>>:

(Eup
T + Edown

T )=2 if both neighbors are present,

Eup
T or Edown

T whichever one neighbor is present.

(4.12)

AIDA was introduced o�ine2 in version 11:03 of the full D� Reco on April 13,

1993 [58]. It ran in Cahits, i.e. before jet �nding took place, scanning a complete

Caeh bank. It was allowed to suppress as many hot cells as it found based on the

above described THCC identi�cation algorithm [47]. The THCC's found by AIDA

were then all suppressed in the Caeh bank by a factor of 10�9, and were recorded

in the Caid bank. In other words, the cells identi�ed as hot by the o�ine version

of AIDA were removed not only from the E/T and the total scalar ET calculations,

but also were not allowed in any of the jets reconstructed thereafter by the Cajets

package.

4.4.2 E�ects of AIDA on Jets

Unfortunately, the o�ine version of AIDA damaged many good jets by remov-

ing good, \isolated" cells which|as it turns out|result from the natural 
uctu-

ations due to hadronization, hadronic shower development, and calorimeter seg-

mentation [53]. This e�ect has also been noticed and discussed in earlier stud-

ies [54, 59, 60]. It turns out that AIDA most often, about 93% of the time, removes

2For completeness we must also mention that AIDA was �rst introduced online in Level 2
during Run 1A, but online versions of it did not seem to have caused any problems [56, 57, 53].
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Figure 4.1: The �R distributions for jets with 0:0 � j�dj < 1:0 and ET of 100{120
GeV (left) and with 1:5 � j�dj < 3:0 and ET of 40{60 GeV (right). Overwhelming
majority of AIDA cells are found in a close vicinity of the jet centroid, well within
the jet cone radius of 0:7.

only one cell. It 
ags �ve or more cells in the events with a frequency of less than

a tenth of a percent

Since jets in the data sample under consideration are reconstructed using

the standard D� �xed-cone algorithm, it is natural to rely on the distance in ��'
space �R, between the AIDA cell and the jet's centroid as a good indicator of

whether or not a cell might actually belong to a jet. The distributions of �R to

the nearest jet are examined when there is only one AIDA cell present in the event

for di�erent detector pseudorapidities �d and various jet ET . Figure 4.1 shows the

�R distributions for jets in the central and forward regions of the detector at ET 's

of 100{120 GeV and 40{60 GeV, respectively. These distributions show that the

overwhelming majority of the AIDA cells are in fact removed from a very close

vicinity of the jet centroid.
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Figure 4.2: The �R distributions for simulated THCC's with packed integer ID's
of +075701 (left) and +251517 (right).

To determine whether these AIDA cells are the THCC's or \jet-associated"

cells incorrectly removed by AIDA, similar plots for the known THCC's must be

examined. However, which cell is a THCC is not known a priori. Nevertheless, one

can use the main feature of a THCC|its unusually high frequency of appearance|

to obtain a good approximation of such a distribution from the data. To do this,

a random direction (i.e. any calorimeter cell) is chosen in the calorimeter to \sim-

ulate" a THCC location. Then the �R distribution of this arbitrarily chosen,

simulated THCC to the nearest jet is obtained from the data. To exclude any pos-

sible biases in the AIDA algorithm itself, only the events not 
agged by AIDA are

considered. Throughout this note a signed packed integer ID is used to identify a

calorimeter cell which is composed of ieta, iphi and the layer number of the cell.

For example, the cell with the ID of �170311 refers to the cell with ieta, iphi and

layer number of �17, 3 and 11, respectively3. The �R distributions for several such

3The cells in the third electromagnetic module (EM3) are subdivided into four to achieve �ner
granularity of 0:05 by 0:05 in � and ', but they are being addressed using layer numbers 3, 4, 5
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simulated THCC's are obtained. For the simulated THCC's with ID's of +075701

and +251517 these distributions are shown in Figure 4.2. One of the characteristic

features of the �R distributions of simulated THCC's is that they approach zero

very quickly as �R ! 0. Also, all of them have a rising part, reaching maximum

and then falling back to zero. The position of the maximum in �R is determined

by the location of the THCC in the calorimeter and by the detector acceptance as

observed from this particular location in the calorimeter.

Comparison of the �R distributions for the AIDA cells to those of the sim-

ulated THCC's shows a drastic di�erence suggesting that most of the cells removed

by AIDA do not exhibit behavior that is characteristic of randomly �ring THCC's.

Thus most of AIDA cells in fact are not THCC's but rather belong to jets! How-

ever, away from the jet centroids, i.e. at high values of �R, the �R distributions

of the AIDA cells do resemble those of THCC's. For example, the �R distribution

for jets in the forward region presented in the right plot of Figure 4.1 clearly shows

a rising part at about �R = 0:4. Also, all of the �R distributions obtained with

the AIDA cells have tails extending to high values of �R|another characteristic

feature seen in the �R distributions of the simulated THCC's.

Thus the evidence forces us to conclude that most often AIDA removes

good, jet-associated cells that happened to be isolated due to the 
uctuations in

the energy deposition pattern of a jet in the calorimeter. Sometimes, however,

AIDA correctly identi�es and removes THCC's. These conclusions have also been

con�rmed by visually scanning many of the events with removed AIDA cells.

Next, we want to examine the number of the cells removed by AIDA in

and 6. Unless otherwise noted, we collectively refer to them as layer number 3.



138

10 3

10 4

10 5

0 2 4 6 8 10 12 14 16 18 20

E
nt

rie
s

AIDA layer number

Figure 4.3: Layer number distribu-
tion of the cells removed by AIDA.
The dark shaded histogram rep-
resents all AIDA cells, while the
gray shaded distribution has AIDA
cells nearby the Main Ring removed.
Note the logarithmic scale.

di�erent layers. To make a fair comparison, however, the cells lying very close to

the Main Ring (MR) must be removed �rst, because the MR goes through coarse

hadronic (CH) layers of the calorimeter and through the EC Massless Gap, con-

taminating the calorimeter cells nearby. This is achieved by ignoring cells from the

close proximity of the MR (i.e. cells with azimuth of 1:0 < ' < 2:2, see chapter 5).

Figure 4.3 shows the layer number distribution of all AIDA cells (dark shade) and

of all AIDA cells except the ones satisfying the MR azimuth cut (gray shade).

Comparing these two distributions, we see that when the MR region is removed,

the number of the AIDA cells in CH layers is reduced more than in �ne hadronic

(FH) layers, as expected. In addition, the number of AIDA cells in the two (CC

and EC) MG's (represented by layer numbers 8 and 10) become almost equal to

each other once the MR contamination is removed, and the number of AIDA cells

in the Intercryostat Detector (layer number 9) is signi�cantly reduced as well. The

latter is due to the fact that the MR losses can easily �re cells in the Intercryostat

Detector (ICD) since there is no material in the crack between the MR, the ICD
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and the cryostat walls.

Figure 4.3 also shows that, after the removal of the MR contamination, the

cells in layer 11 (the �rst �ne hadronic layer, or FH1) are removed most often by

AIDA. This is understood by examining how much material is present in di�erent

layers of the calorimeters and in front of them. The integrated nuclear interaction

length for the FH1 is much larger than that for any of previous layers, and is almost

three times larger than that of the last electromagnetic layer 7 (EM4) [53, 61]. To

determine whether the candidate cell has an isolated deposition of energy, AIDA

compares the cell ET to the average ET deposited in the longitudinal neighbors.

Then, if the candidate THCC is in the FH1, one of its longitudinal neighbor cells is

in succeeding hadronic layers located deeper than the FH1, while the other neighbor

is necessarily located either in the ICD or in the the MG, both with vanishing

values of �, or in the last layer of the electromagnetic modules, depending on the

pseudorapidity. For either of the three preceding layers, the integrated � is about

3 times smaller than that for FH1. Therefore, on average large or even comparable

energy depositions should not be expected in the preceding neighbors of the FH1.

This is true even for the succeeding FH layers since the FH1 is located where the

hadronic shower maximum is expected to appear. Therefore, of course, the ratio

in Eq. 4.11 may be rather small even for good, jet-associated cells in the FH1, but

these cells will then be incorrectly removed by AIDA: hence, the high frequency of

the AIDA cells in the FH1.

The next most populated layer 15 (or the �rst coarse hadronic layer, CH1).

Basically the same argument explains why AIDA cells appear in layer 15 so

frequently|its lower lying longitudinal neighbors have integrated � smaller by a
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factor of 2 and the late developing hadronic showers may deposit most of their en-

ergy in this \tail-catcher" coarse hadronic layer. In addition, by visual scanning of

many events, it is seen that hadronic showers in the calorimeter may naturally have

highly \popcorn-like" energy deposition pattern resulting from inhomogeneities in

the hadronic shower development and nuclear interactions. Still, the largest depo-

sitions of energies are most likely to appear in cells with larger values of �, once

more leading us to layers 11 and 15.

In addition, we have also looked at the Monte Carlo (MC) sample with no

noise added that was reconstructed with AIDA \turned on". The standard MC

sample has the noise overlayed on top of the particle level generated events [62].

AIDA removed cells in the MC sample as well, where clearly there were no hot

calorimeter cells present! Therefore, each and every cell that AIDA removed in the

MC data is a result of natural 
uctuations in the energy deposition pattern of a jet

in the calorimeter and as such should not have been removed by AIDA.

These examples make it clear that the AIDA algorithm was inadequate.

It can not account for the natural 
uctuations in the hadronic showers, and the

comparison of the energy depositions in di�erent neighbors does not take into con-

sideration how likely the energy is to be deposited in di�erent layers based on the

amount of material present in them as well as in front of them.

Furthermore, the AIDA package had a mistake in its code. Instead of cal-

culating the ratio of the transverse energies: hET i to Ecand
T according to Eq. 4.11,

AIDA actually calculated the ratio of the average energy of the longitudinal neigh-

bors to the transverse energy of the candidate cell [63]. While the consequences

of this mistake are negligible in the central region, AIDA removes fewer cells in
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the forward region than it would have had the calculation been done according to

Eq. 4.11. Fortunately, this means that there was less damage done to the forward

jets.

4.4.3 AIDA Cell Restoration

To be able to repair the damage caused to the jets by AIDA, we �rst need to

identify cells correctly removed by AIDA (i.e. THCC's), separate them from the

cells incorrectly removed by AIDA, and restore the latter to jets.

The high frequency appearance of THCC's once again guides us in identify-

ing them among the AIDA cells. Various \scatter" plots of cells removed by AIDA

are examined in all layers, see for example Figure 4.4 for layer 15. The THCC's

clearly stand out in scatter plots of ieta vs. iphi. Furthermore, scatter plots of ieta

vs. �R and iphi vs. �R show that these cells have a speci�c behavior: their �R

distributions are uniform in �R extending to high values of �R. This feature is

also seen in the �R distributions of simulated THCC's, as noted in the previous

section. Such cells then are identi�ed in every layer and they make up a list of the

candidate THCC's|there are in total 30 of them found among the AIDA cells.

To make sure that these are actual THCC's, as a next step, the �R dis-

tributions of all these THCC candidates are examined. Figure 4.5 shows the �R

distributions of two of them with the cell ID's of �192315 and �134917. These dis-
tributions should be compared to the �R distributions of the simulated THCC's in

Figure 4.2. It is clear that the cell �134917 exhibits THCC-like behavior while the
cell �192315 has drastically di�erent �R distribution being always found very close

to the jet centroid, well within the jet cone radius of 0:7. Such a signature indicates
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Figure 4.4: Di�erent scatter plots of the AIDA cells in layer 15: ieta vs. iphi (top
left), ieta vs. �R (top right), iphi vs. �R (bottom left), and a \lego" plot of ieta
vs. iphi (bottom right). The THCC's can clearly be identi�ed due to their high
frequency of appearance.
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Figure 4.5: The �R distributions of two THCC candidates among the cell removed
by AIDA with packed integer ID's of �192315 (left) and �134917 (right). Di�er-
ence between the two is apparent|the cell �192315 is most likely a jet-belonging
cell incorrectly removed by AIDA while the cell �134917 has the �R distribution
very much alike of that of the THCC.

that this cell most likely is not a randomly �ring THCC but rather a jet-associated

cell and as such was incorrectly removed by AIDA. Therefore, such cells should

be allowed to be restored to jets, while cells like �134917 should be identi�ed as

a THCC and must be removed before the restoration procedure. Having examined

the �R distributions of all 30 THCC candidates, only 26 of them were identi�ed as

THCC's and they are listed in Table 4.2.

The only cell with relatively high frequency of occurrence remaining in

these plots is the cell �192315 which despite this has not been identi�ed as a

THCC based on its �R distribution (see the discussion in the previous paragraph).

Furthermore, removal of the THCC's signi�cantly cleans the �R distributions, as

can be seen by comparing the cleaned �R distributions in Figures 4.6 to the original

�R distributions with THCC's presented in Figures 4.1.
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Calorimeter Module Layer Number Packed Integer ID of THCC's

EM1 1 +075701

EM2 2 +085802, +114502

EM3 3(4; 5; 6) �243803, �026403, +042503, +186003
EM4 7 +024807

CCMG 8 None

ICD 9 +092209, +102209, +112209, +131509

ECMG 10 +084510, +084610

FH1 11 None

FH2 12 +021412, +133012

FH3 13 �315013, �084113,
FH4 14 None

CH1 15 �125515, �115415, +154215, +272615
CH2 16 None

CH3 17 �133017, �134917, �135017, �114217

Table 4.2: THCC's found among the cells removed by AIDA.

The remaining AIDA cells can be restored if they pass two requirements.

One of them is based purely on \geometrical" considerations and requires a cell to

be within

�R < 0:7 (4.13)

of the jet's centroid in order for it to be restored to this jet. The choice of 0:7 matches

the cone size of jets used in these studies, it is a reasonable choice based on the

cleaned �R distributions everywhere in the detector (i.e. in every pseudorapidity

region), and it is very \e�cient" as can be seen in Figure 4.6.

Another variable is also checked before allowing the AIDA cell into the jet.
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Figure 4.6: The �R distributions for jets with 0:0 � j�dj < 1:0 and ET of 100{120
GeV (left) and with 1:5 � j�dj < 3:0 and ET of 40{60 GeV (right) after the removal
of the THCC's.

It is referred to as fET
and is de�ned as:

fET
=

Ecell
T

Ejet
T + Ecell

T

: (4.14)

The fET
distributions for di�erent �d regions and jet ET are shown in Figure 4.7

for the events with only one AIDA cell present after the THCC's are removed from

the sample and for those jet-AIDA cell pairs that pass the �R < 0:7 requirement.

Based on these distributions, the reasonable and \e�cient" choice of the fET
\cut"

is 0:5 which is equivalent to requiring the candidate AIDA cell to have transverse

energy less than that of the jet. Thus the second requirement is more of a kinematic

cut:

Ecell
T < Ejet

T ; (4.15)

and it must be satis�ed simultaneously with the �R requirement of Eq. 4.13.

If an AIDA cell is not a THCC and it passes the two restoration criteria

as de�ned in Eqs. 4.13 and 4.15, it is added back to the jet. Jet kinematic variables
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Figure 4.7: The fET
distributions for jets with 0:0 � j�dj < 1:0 and ET of 80{100

GeV (left) and with 1:5 � j�dj < 3:0 and ET of 40{60 GeV (right) after the removal
of the THCC's.

are then re-calculated following the Snowmass accord [50] (as the corresponding

calculations consistent with the D� de�nitions cannot be performed from ntuple

information):

Ejet
T �! Ejet

T + Ecell
T (4.16)

�jet �! �jet � Ejet
T + �cell � Ecell

T

Ejet
T + Ecell

T

(4.17)

'jet �! 'jet � Ejet
T + �cell �Ecell

T

Ejet
T + Ecell

T

: (4.18)

In addition, the restored cell is vectorially subtracted from the missing transverse

energy of the event:

~E/T �! ~E/T � ~Ecell
T : (4.19)

Because of the ET weighted re-calculation of the pseudorapidity and az-

imuth of jet's centroid according to Eqs. 4.17 and 4.18, we sort AIDA cells in

ascending order in ET (i.e. starting with the lowest ET cell) prior to restoration.
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The reason is that if a high ET cell gets restored to a jet �rst, then the re-calculation

of jet's centroid may not allow another, lower ET cell to get restored to the same

jet|it may fail the �R restoration criteria only because the jet's centroid has al-

ready moved signi�cantly due to the �rst cell's high transverse energy. If we start

with the lowest ET cell, then the jet's centroid does not move as much because of

the ET weighted scheme of its re-calculation, and this may e�ectively allow more

cells to get restored to this jet.

Each time an AIDA cell gets restored to a jet, it is removed from the list

of AIDA cells, and the corresponding original jet is replaced by the \restored"

jet, whose kinematic quantities are now given by Eqs. 4.16{4.18. This means that

when the next cell from the AIDA cell list is checked on the restoration criteria of

Eqs. 4.13 and 4.15, the most current jet quantities will be used. The reader will

notice that the re-calculation of the jet kinematic variables every time a cell gets

restored to it may cause a problem when the AIDA cells appear in groups very

close to each other in � � ' space (for example, due to a BLS card failure) and a

jet happens to be nearby. Of course, it would be a mistake to restore such cells to

the jet. However, in such cases the �R < 0:7 will most likely be passed by most

of these cells and only the Ecell
T < Ejet

T cut may stop a jet from \picking up" all or

most of these cells. But the ET of the jet is increased each time one of these cells

is being restored to it according to Eq. 4.16, and thus it is going to be less and less

likely for the next cell to fail the ET requirement. This way the jet may pick up

many or all of such cells, obviously creating a bad jet. Nevertheless, such events or

jets are then more likely to be removed by the event or jet quality cuts (especially

by the E/T fraction cut). On the other hand, not re-calculating the jet quantities,

and in particular its ET , may allow fewer such cells to be restored to it, making it
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more feasible for such jets or events to pass the quality cuts and hence contaminate

the sample.

Whether or not we sort AIDA cells prior to restoration and re-calculate

jets each time a cell gets restored to it will yield the same results most of the time

since, as it was shown earlier, events with NAID = 1 dominate. However, we have

calculated the di�erence between the fraction of the cells being restored in each bin

of NAID when sorting the cells and re-calculating the jet quantities each time a cell

gets restored to it and without doing any of this. The result is intuitively expected:

when one sorts and re-calculates, the fraction of the restored cells is higher by

0:9%, 2:2%, and 4:4% for the events with NAID of 2, 3, and 4, respectively. (As

NAID increases, this di�erence becomes even larger. However, the fraction of events

with NAID� 5 is less than a tenth of a percent and therefore the overall e�ect is

negligible.) Therefore, our choice is to sort cells in ascending order in ET and to

recalculate the jet quantities each time a cell gets restored to a jet.

To summarize, this is how the AIDA cell restoration algorithm (Acra)

works:

(1) If the D� J.E.S. correction has been applied to jets, un-correct them.

(2) Remove the THCC's from the AIDA cell list.

(3) Sort the remaining AIDA cells in ascending order in ET and start with

the �rst cell (i.e. lowest ET cell) in this list.

(4) For the AIDA cell under consideration, calculate �R with respect to

every jet in the event, using the most current, updated jet quantities.
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Figure 4.8: The distributions of change of the missing ET of the event (left) and
the jet ET (right) due to Acra. Note the logarithmic scales.

(5) Beginning with the nearest jet, check if this cell passes the �R and the

ET requirements of Eqs. 4.13 and 4.15.

(6) If so, add this cell to the jet, i.e. re-calculate the jet quantities according

to Eqs. 4.16{4.18 and the E/T of the event according to Eq. 4.19. Remove

this cell from the AIDA cell list and go to the next cell (i.e. step 4

above).

(7) If this cell does not pass the restoration criteria, go to the next nearest

jet in the event. Once all the jets are checked, go to the next AIDA cell

(step 4 above) until all AIDA cells are examined.

(8) Apply the J.E.S. correction to all jets in the event if they had been

un-corrected for performing this restoration procedure.

Figure 4.8 shows distributions of the change in the E/T of the event and

the jet ET due to restoration. The E/T of the event decreases 64% of the time after
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Figure 4.9: The distributions of change of the pseudorapidity � (left) and azimuth
' of a jet due to Acra. Note the logarithmic scales.

applying the Acra. One may expect the E/T of the event to always decrease if the

restoration algorithm works properly. However, due to �nite detector resolution and

possible miscalibration, the E/T can either decrease or increase|only in case of an

ideal detector one may expect the E/T to always decrease. The possibly symmetric

background in this plot due to the �nite detector resolution is very hard to estimate

in order to give some reliable numerical measure of this e�ect. On the other hand,

the change in the jet ET is 20 GeV or greater 24% of the time, and 40 GeV or

greater 3% of the time.

Finally, Figure 4.9 shows distributions of the change in the pseudorapidity

� and the azimuth ' of a jet due to the Acra. The shapes are rather symmetric

indicating no bias in either direction. In addition, the absolute magnitude of the

change is rather small|both �� and �' distributions having an rms of about 0:02.
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4.5 The ~HT Correction

Due to the high instantaneous luminosity in Run 1B, the tracking system often

�nds more than one vertex for the primary interaction point, and it may make a

mistake in determining which of the vertices in fact corresponds to the primary

interaction. For events with two vertices present the QCD group has developed

a so called misvertexing (or ~HT ) correction [46]. It calculates the vector sum of

transverse energies of all jets in the event with respect to both vertices. This global

event quantity is referred to as ~HT .

The magnitude of ~HT for the two vertices is compared, and the vertex with

the minimum value of corresponding HT is retained to be the true vertex of the

primary interaction. If the true vertex determined by this method is di�erent from

the primary vertex as given by the tracking system, all jet kinematic variables are

recalculated with respect to this new true vertex using simple geometric conversions.

Also, in such cases ~HT is taken to be the new missing transverse energy of the

event because the event ~E/T as given by Reco is de�ned as a vector sum of all

calorimeter cell transverse energies with respect to the primary vertex and it cannot

be recalculated from ntuple information. Moreover, there is a strong correlation

between the E/T of the event and the HT as illustrated in Figure 4.10, justifying

the replacement of the E/T with the HT in cases when the ~HT algorithm picks the

second vertex as primary.
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Figure 4.10: Correlation between the event E/T and the HT . The sample with the
MR and hot cells removed clearly shows that the two quantities are highly correlated
(top right). Choosing the correct vertex lowers the cross section by about 5% on
average (bottom right).

4.6 The Total � Bias Correction

The angular position of jets reconstructed in D� is usually given by their azimuth

' and pseudorapidity � (or, equivalently, polar angle �). The cross sections in
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this analysis are averaged over ' and thus the only relevant measure of jet's angu-

lar position is �. It has been observed in full MC simulations that reconstructed

calorimeter jets are biased towards central rapidities compared to their particle level

counterparts [64]. The detailed analysis of this e�ect is described in this section.

In addition, at D�, we compare the measured jet cross sections to the par-

tonic level theoretical predictions (usually, with Jetrad), which use the Snowmass

accord as a default for combining partons into jets. The standard D� jet �nding

and reconstruction algorithm is di�erent from the Snowmass accord in calculating

jet angles, as can be seen by comparing Eqs. (4.1) to Eqs. (4.7). The e�ects of D�

versus Snowmass de�nitions have been addressed in the past as well [65].

Jet reconstruction and di�erences in algorithms may introduce biases in

some jet quantities. The relevant jet quantities have to be checked against such

biases and, if necessary, corrections must be derived. The jet cross sections that we

measure correspond to particle level cross sections, i.e. prior to jets entering the

calorimeters. Therefore, our goal is to derive the corrections to take a D� Calorime-

ter Jet (call it D�CJ) to the corresponding jet that would have been measured by

the Snowmass algorithm at the particle level, or a Snowmass Particle Jet (SNPJ).

All possible biases arising due to the reconstruction and algorithm di�erences are

pictorially shown in Figure 4.11 by the arrows. One can think of a \true" jet to

be a SNPJ (Snowmass Particle Jet) in the upper left corner of the rectangle. Then

the possible biases may distort the corresponding jet quantities via the two possible

routes to its reconstructed value as measured with the standard D� algorithm|the

bottom right corner of the rectangle, or D�CJ. It is this net or combined change

in a given jet quantity that is of interest. We refer to this combined bias as a total
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bias, �tot, which can be thought of as a \direct sum" of the two biases due to the two

di�erent e�ects considered. For example: �tot � �PJalg � �D�rec , as the corresponding

\vector" sum triangle rule would indicate in Figure 4.11.

To address this concern, we analyzed a Herwig+Showerlib'ed MC [66]

sample which has both, particle and calorimeter jets reconstructed with both D�
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and Snowmass algorithms. That is to say, the four, generally di�erent, jets as shown

in the four corners of the rectangle in Figure 4.11 are all available. Our eventual

goal is to derive a correction, if necessary, for the total bias that would take the

D�CJ to the corresponding particle jet SNPJ.

However, it is interesting as well as necessary for completeness to examine

the two biases of di�erent origin (i.e. reconstruction versus de�nition) separately

as well. In addition, although we suspect the biases in both cases to appear only

in jet pseudorapidity as a function of � itself, other jet quantities (such as azimuth,

ET , etc.) must also be checked for possible biases, and the dependence of possible

biases on jet quantities other than pseudorapidity must be examined as well.

First of all, the four di�erent jets in the MC sample are matched up ac-

cording to their separation in � � ' space where the distance �R is de�ned in the

usual way, �R =
q
(��)2 + (�')2. The reference jet is always the D�CJ. Jets

are matched as follows. Consider two types of jets, X and Y, and let there be

NX jets of type X, and NY jets of type Y. A matrix of dimension (NX � NY) is

built, with the elements being the distances in ��' space �R(IX,IY), IX = 1, NX,

and IY = 1, NY, between all possible pairs of jets of type X and Y. The smallest

distance �R(IX,IY) is found in the matrix, the corresponding jets IX and IY are

paired/matched, and the corresponding IX-th row and IY-th column of the matrix

are \erased", or ignored from any further consideration. Then, in the remaining

elements of the matrix (that is, ignoring all columns and rows of previously iden-

ti�ed pairs), the procedure for �nding the smallest distance R is repeated until all

possible pairs|which cannot be more than min(NX,NY)|are found.

Next, the average di�erence of the jet quantity suspected for bias is studied
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as a function of various jet quantities to get a general understanding of the biases

and their magnitudes. For instance, one can study a bias in jet � between SNCJ

and SNPJ. We �rst examine average biases of the matched jets, without any cut

on �R. However, it turns out that a loose �R cut is necessary. The reason is that

not all particle level jets may have the corresponding calorimeter jets reconstructed

due to the di�erences in ET thresholds, energy resolutions, etc. This may lead

to badly mismatched jets with unexpectedly large values of �R, contributing to

the background at large values of the distributions of �R. They can be removed

by a rather loose cut of �R < 0:7, the radius of the algorithm cone itself. One

should be careful when applying such a cut not to bias the measurement of the

bias itself. Various other cut values have been checked and no measurable biases

have been observed as long as the cut value is in the order of the jet cone radius,

hence our choice of the cut value of 0:7 [67]. To reiterate, the cut �R < 0:7 is very

e�cient in removing mismatched jet background and at the same does not bias the

measurement.

We consider all jets above ET of 10 GeV in this study. Having studied

biases in jet � and ', we see that the biggest e�ect is on jet �, as expected [67].

Figure 4.12 shows all four, plus the total, biases in jet � as a function of �D�CJ for

all jet energies. The top squares and upward triangles show the e�ect on jet � due

to the algorithm di�erences alone. They respectively correspond to �CJalg and �
PJ
alg in

Figure 4.11. The bias is calculated with respect to the reference jet which is the

jet at the origin of the corresponding bias \vector" in Figure 4.11; for example,

�PJalg[�] = �D�PJ � �SNPJ. However, the bias is always plotted against quantities of

the jet D�CJ, which serves as an overall reference point in these studies. It is seen

that the bias due to de�nition di�erences is larger in the calorimeter jets (triangles)
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compared to the particle jets (squares) which is a consequence of additional smearing

e�ects that the calorimeters introduce. The notable feature of this bias is that it

plateaus at �D�CJ � 2:0 in case of particle jets. The plateau is less prominent and

seems to appear at higher �'s in case of the calorimeter jets.
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The bottom squares and downward triangles in Figure 4.12 indicate the

biases in jet � due to reconstruction alone with the Snowmass and D� algorithms,

respectively �SNrec and �D�rec of Figures4.11. It is seen that the bias in case of the

D� de�nitions is smaller (triangles). The dip in the �D�CJ region of 0:5{1:8 is due

to the degraded response in the intercryostat region as a result of which jets are

pulled towards more central pseudorapidities. The increase of the e�ect above � = 3

is attributed to the fact that jets start to loose a signi�cant part of their energy

through the beam pipe, which also results in pulling jet centroids to lower �'s.

It is evident that the biases due to algorithm di�erences and to reconstruc-

tion go in opposite directions, nearly canceling each other. Filled circles show the

net or the total � bias indicating a maximum bias of about 0:15 radians for jet �'s

below 3:0.

The total � bias is also studied as a function of jet energy which is an
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unbiased quantity|de�nitions of jet angles do not a�ect it. Slight dependence on

jet energy is observed. Therefore, we �tted the total � bias as a function of �D�CJ in

6 energy bins from 20 to 500 GeV to 3-rd to 4-th degree polynomials in combination

with a Gaussian as necessary. The details can be found in reference [67] which also

lists the routine that provides the total � bias correction as a function of the D�CJ

� and energy. The closure plot showing the total � bias before (�lled circles) and

after (open circles) application of the correction derived in such a way is presented

in the left plot of Figure 4.13 as a function of �D�CJ for all energies. The right plot

in the same Figure shows the total � bias correction closure as a function of jet

energy for all pseudorapidities. The closure is excellent. An uncertainty on jet �

of �0:005 rad is assumed and the cross sections are rederived with this uncertainty

applied to jet �. The total � bias error is on the order of 2{4% and decreases with

decreasing jet pseudorapidity.

We also check possible biases in jet azimuth. There is a slight '{bias present

which presumably is an artifact of the Monte Carlo sample. It most likely has to

do with the ' misalignment of the calorimeters in the MC, or the bias in the single

particle shower MC generator. In any case, since the majority of physics analyses

are not going to be a�ected by a bias in an absolute jet azimuth, and because its

magnitude is small (about 0:01 rad at most), we do not concentrate on this issue.

Finally, we note that although there is a bias in jet �, there is none in jet

ET . The reconstruction � bias moves jet centroid so insigni�cantly (compared to the

calorimeter tower segmentation of 0:1� 0:1 in � � ') that it does not cause wrong

calorimeter towers to get assigned to a jet. According to the D� jet de�nition, jet

ET is a sum of the ET 's of individual towers inside the �xed algorithm cone and
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therefore, in the process of reconstruction, jet ET can only get biased if wrong towers

are assigned to a jet. Since this does not happen we conclude that no recalculation

of jet ET is required when correcting for jet �. The situation would have been

di�erent if jet pT were actually used. It would be a�ected because the bias in the

jet centroid is independent of its magnitude. We also remark that jet ET 's are

de�ned in the same way in D� and in the Snowmass accord eliminating the second

possible ET bias source as well. To summarize, we apply the total � bias correction

to jet � but do not recalculate jet ET . The total � bias correction is applied after

all other reconstruction as well as jet energy scale corrections.
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CHAPTER 5

DATA SELECTION AND ASSOCIATED EFFICIENCIES

While observed jets at D� are most often produced as a result of hard pp collisions,

there are numerous processes that can cause appearance of so called \fake" jets in

the calorimeters|the primary tools for jet energy measurement. These processes

include cosmic ray bremsstrahlung, losses of protons from the main ring, beam-

gas interactions, and some hardware malfunctions such as the appearance of a hot

channel due to a high voltage discharge in a calorimeter cell or failure of baseline

subtractors (BLS), etc. All of these will occasionally deposit large amounts of \fake"

energy in the calorimeter, and may either become a source of \fake" jets, or get

reconstructed as part of good jets that happened to be nearby this \fake" deposition

of energy, thus damaging these jets.

In addition to various utilities that have been designed to remove hot cells

due to electronic failures, the D� QCD group has developed a number of cuts to be

applied event-by-event (event quality cuts) or jet-by-jet (jet quality cuts) in order to

remove \fake" jets from the data samples. Naturally, however, these cuts sometimes

remove good jets which have just 
uctuated outside the range set by the quality

cuts. Therefore, it is necessary to determine the good event and good jet e�ciencies

associated with the quality cuts to compensate for the removal of these good events

and jets.
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In order to establish such quality cuts and their e�ciencies independent

of the version of the D� jet energy scale (JES) correction, this portion of the

analysis is done without the JES correction. Also, the data from the four jet �lters

(Jet 30, Jet 50, Jet 85, Jet Max) are combined to increase the statistics of the

sample. This method has been checked against possible trigger biases on the quality

cut e�ciencies and none have been observed [68, 69].

After applying Acra, the data sample naturally gets divided into two

classes of events: Restored (events with at least one restored cell present) and

Normal (events with no restored cell). Furthermore, jets from the Restored event

sample can be subdivided between two types of jets: Restored (jets with at least

one restored cell) and Normal (jets without restored cells, i.e. as given by Reco).

Of course, all jets from the Normal event sample are Normal jets as well. This clas-

si�cation has been adopted and is used throughout this section since the di�erent

samples may require di�erent treatment. It should be noted that the fraction of

Restored jets ranges from about 5% for low ET jets up to about 10% for high ET

jets [46, 53].

Provided with AIDA cell layer information in the most current version of

the Run 1B QCD ntuples, Acra can re-calculate most of the event and jet quantities

if restoration takes place in the event. Among these quantities are the E/T of the

event and all jet kinematic variables. One of the jet quantities that can not be re-

calculated by Acra is the hot cell fraction of a jet|de�ned as a ratio of transverse

energies of the second most energetic calorimeter cell to the most energetic cell in

the jet1|because the cell information is not available in the QCD ntuples.

1The original de�nition of the HCF at D� is actually inverse of this but for the purposes of
this analysis this de�nition is used.
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Figure 5.1: The third moment about the mean M3 of the EMF distributions of
Normal jets as a function of jet �d for jet ET of 40{60 GeV. Only the vertex cut
jZj < 50 cm has been applied.

E�ciencies of jet quality cuts are expected to be functions of jet trans-

verse energy ET and detector pseudorapidity �d. Therefore the �nal combined data

sample is binned in ET and �d. The choice of a particular ET binning is driven

purely by statistics and is somewhat arbitrary but, for consistency, the e�ciencies

for di�erent cuts are calculated in the same ET bins.

The binning in �d is planned so as to best isolate non-uniformities in the

calorimeter coverage as a function of �d. These include di�erences between the cen-

tral and the forward calorimeters as well as poorly instrumented detector regions

such as intercryostat region (ICR) with intercryostat detectors and massless gaps.

Therefore the choice of a particular �d binning is guided by the D� detector geom-

etry. In addition, the electromagnetic fraction of a jet's transverse energy (EMF)

is sensitive to the ICR since this region has non-uniform electromagnetic coverage.

Therefore the EMF is used to better identify the boundaries of this region.
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For low and high values of �d, the EMF distributions resemble (visually)

a Gaussian distribution while in the ICR they are strongly shifted and skewed

towards lower values of EMF [69]. Such behavior of distributions is statistically

well described by odd moments of distributions about the mean. The lowest order

odd moment of interest is the third moment M3, or \skew". For a normalized,

continuous distribution f(x) of a random variable x the third moment about its

mean hxi is generally de�ned as:

M3 =
Z 1

�1
(x� hxi)3f(x)dx: (5.1)

It must be noted thatM3 as well as all higher order odd moments are exactly zero

for a Gaussian distribution. Third moments of the EMF distributions of Normal

jets are then calculated in �ne �d bins of 0:1 (equal to detector granularity) and are

plotted against �d in Figure 5.1 for jets with ET of 40{60 GeV. Similar plots for

Normal jets of higher ET are presented in [69]. Error bars on these plots correspond

to standard statistical errors equal to the square root of the variance of the third

moment. The variance itself is given by [70]:

Var(M3) =M6 �M2
3 � 6M4M2 + 9M3

2 ; (5.2)

where Mn denotes the n-th moment of the distribution about its mean.

The ICR is clearly identi�ed in Figure 5.1 as a region with M3 > 0 (ev-

erywhere else M3 being negative) suggesting 1:0 < j�dj < 1:5 to represent the

boundaries of the ICR. The plot also shows the statistically signi�cant deviation

of the EMF distributions from a Gaussian distribution (characterized by M3 = 0)

even in the central and the forward regions of the detector. Therefore the following

three �d bins are considered in this study:
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0:0 � j�dj < 1:0 Central Region (CEN)

1:0 � j�dj < 1:5 Intercryostat Region (ICR)

1:5 � j�dj < 3:0 Forward Region (FOR)

This binning also follows the detector geometry and is very close to the

choices of the �d binning made in earlier studies [71, 72, 73].

5.1 Determination of Jet Quality Cuts

For the determination of jet quality cut values the studies are limited to the Nor-

mal jet sample. We present limited number of illustrative plots and the reader is

referred to [69] for a complete set of plots as well as more detailed discussions where

applicable.

5.1.1 Electromagnetic Fraction Cut

The electromagnetic fraction of a jet (EMF) is de�ned as a fraction of its transverse

energy deposited in electromagnetic modules of the calorimeters. By de�nition

then the EMF is sensitive to large depositions of fake energy by a noisy cell located

in either the electromagnetic or the hadronic layers of the calorimeters. In the

former case, the fake energy will produce an excess at the high end of the EMF

distribution while in the latter case noise will mostly appear at low values of the

EMF distribution. The cuts on the EMF are therefore designed to remove such

noise.

Typical distributions of the EMF with di�erent event cuts applied before-

hand are shown in Figure 5.2 for the CEN region and jet ET of 100{120 GeV. The
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Figure 5.2: The EMF distributions of Normal jets in the CEN region for jet ET of
100{120 GeV with only the Z cut applied (left) and with the Z and the RMTE cuts
applied (right). Vertical lines indicate the low and the high EMF cuts.
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dard Z cut) from Figure 5:2. Ver-
tical lines indicate the low and the
high EMF cuts.

EMF distributions with only Z cut are compared to the EMF distributions with the

missing transverse energy fraction (RMTE) cut applied in addition to the Z cut. The

RMTE cut is very powerful in removing noise and therefore the sample is considered

to be clean after applying the RMTE cut. The ratio of the EMF distributions with
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and without the RMTE cut (in addition to the standard Z cut) is shown in Figure 5.3

for the CEN region. The ratio plots prove that the RMTE cut cleans up the sample

and show that the noise in EMF distributions appears approximately below 0:05

and approximately above 0:95.

Note: The goal is to establish the jet quality cuts independently from the

event cuts to make good jet selection possible even when the RMTE cut is not de-

sirable to use. The ratio plots in the CEN and FOR regions then suggest 0:05 and

0:95 to be a good choice for the EMF cut values since they will remove most of the

noise and will be reasonably e�cient.

However, as discussed in section 2:5, in the ICR the EMF distributions are

shifted and skewed towards lower values due to the lack of electromagnetic modules

in this poorly instrumented region of the D� detector and the low EMF cut of 0:05

should not be applied in this region. Therefore, good jets are selected with:

0:00 < EMF < 0:95 in the ICR

0:05 < EMF < 0:95 elsewhere (5.3)

5.1.2 Coarse Hadronic Fraction Cut

The coarse hadronic fraction of a jet (CHF) is de�ned as a fraction of its transverse

energy deposited in the coarse hadronic layers of the calorimeters. The CHF cut is

studied after applying the EMF cut. This cut is mostly designed to remove jet-like

objects appearing due to the Main Ring (MR) losses in the calorimeter. Along

with the MR objects it is also intended to remove jets with noisy cells in the coarse

hadronic layers of the calorimeters.
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gions superimposed. The Z, RMTE
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Following an approach similar to that used for the EMF cut determination,

the CHF distributions after the Z and the EMF cuts only are compared to the CHF

distributions with the RMTE cut applied in addition to further clean up the sample.
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Typical CHF distributions with these two sets of cuts superimposed are shown in

Figure 5.4 for the CEN region and jet ET of 100{120 GeV. It is clear that the noise

removed by the RMTE cut mostly appears above CHF of about 0:4. The ratio of

these distributions also clearly demonstrates this e�ect, suggesting the cut value for

CHF to be 0:4.

In the ICR, however, CHF distributions are shifted to higher values, see

for example Figure 5.5. This is due to the fact that in the ICR there is no or very

little material in front of the coarse hadronic layers. Thus it is not surprising that

in the ICR larger fraction of jet's energy is contained in the coarse hadronic layers

compared to the CEN or the FOR regions. The 0:4 cut would be ine�cient in the

ICR, and thus has been moved to a higher value of 0:6 in the ICR only.

In summary, after applying the EMF cuts, good jets are further selected

with:

CHF < 0:6 in the ICR

CHF < 0:4 elsewhere (5.4)

5.1.3 Hot Cell Fraction Cut

The hot cell fraction of a jet (HCF) is de�ned as a ratio of transverse energies

associated with the second most energetic calorimeter cell to the most energetic cell

in the jet. Sometimes Reco �nds jets with unusually low values of HCF which

means that most of their energy comes from one calorimeter cell. In a good jet,

energy is expected to be distributed over many calorimeter cells due to longitudinal

as well as lateral development of particle showers in the calorimeters. It is therefore
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Figure 5.7: The ratio of the HCF
distributions with and without the
RMTE cut from Figure 5:6. Vertical
line indicates the HCF cut.
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probable that jets with very low values of HCF are \fake" jets reconstructed from a

single electronically noisy cell. The HCF cut thus aims at removing these unphysical

jets and is applied after the EMF and the CHF cuts.

Typical HCF distributions after all other cuts have been applied and with



171

and without the RMTE cut are shown in Figure 5.6 for the CEN region and jet ET

of 100{120 GeV. The distribution with an additional RMTE cut is cleaner, as can

be seen from the ratio plot of HCF distributions with and without the RMTE cut

in Figure 5.7. Similar plots for the ICR and the FOR region are presented in [69].

The ratio plots then suggest to cut the HCF at 0:05, and therefore after the EMF

and the CHF cuts, good jets are selected with

HCF > 0:05 (5.5)

everywhere in the calorimeter.

5.2 Determination of Event Quality Cuts

Events are selected by applying cuts on the missing transverse energy and on the

position of the reconstructed primary vertex.

5.2.1 Determination of the RMTE Cut

The missing transverse energy fraction of the event is de�ned as:

RMTE =
E/T

E lj
T

; (5.6)

where E/T is the missing transverse energy of the event and E lj
T is the transverse

energy of the leading jet in the event. The leading jet is also required to be good,

i.e. to pass jet quality cuts. Detailed studies show that, for cut value determination

purposes, this allows combining events and jets independently of whether or not

Acra has been applied to them, and, for the corresponding e�ciency calculation

purposes, provides us with clean enough subsample [69]. Also, the distributions
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for 1=RMTE show the noise more clearly and are more convenient to use for these

studies.

A typical 1=RMTE distribution is shown in Figure 5.8 for the CEN region

and leading jet ET of 60{80 GeV. The 1=RMTE distributions clearly show the noise

peak at about RMTE = 1. Events in this peak as well as ones with 1=RMTE < 1 have

very large E/T . Possible sources may be cosmic rays, the Main Ring losses as well as

electronic malfunctions, like BLS failure, etc. The RMTE cut is thus introduced to

remove such backgrounds. As can be seen from the plots, a good event must satisfy

the cut of RMTE < 0:7 or equivalently:

1=RMTE > 1:43: (5.7)

This cut value is accepted for all rapidities and transverse energies of the leading

jet of the event (also see discussion on page 186).
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5.2.2 Determination of the Vertex Cut

The distribution of the z-coordinate of the primary interaction vertex during Run 1B

for each of the jet triggers used in this analysis and after the ~HT revertexing is

applied as needed, are shown in Figure 5.9. The plots exhibit the random, close-

to-Gaussian nature of the spread in the Z-vertex position which is due to non-zero

length of the colliding beam particle bunches at the Tevatron. The distributions

are centered at zero and have a typical rms of about 30 cm. Frequently, however,

the vertex can be found quite far away from the center of the detector. Such

events may contribute jets with degraded resolution because they may shower in

less well instrumented regions of the D� detector such as ICR. In addition, due to

the pseudo-projective nature of the D� detector, jet pseudorapidity (and hence its

transverse energy) is less precisely measured the further from the detector's center

the vertex is found. For these reasons, the vertex is required to be within 50 cm of

the detector's center, i.e. jZj < 50 cm.

5.3 The Methodology for Cut E�ciency Calculation

The most important step in cut e�ciency determination is to obtain a true distri-

bution of the cut variable, i.e. a distribution containing only good jets or events.

Once such a true distribution is known, the e�ciency of the corresponding cut is

calculated in a straightforward way as:

" =
Nsurv

Ntot

with Ntot = Nsurv +Nfail ; (5.8)

where Nsurv and Nfail respectively are the number of good entries surviving and

failing the cuts in the true distribution of the cut variable under consideration. By
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de�nition then the variable Nsurv follows a binomial distribution with a variance ofq
Ntot � " � (1� "). Therefore the standard statistical error on the e�ciency is given

by:

�" =
Var(Nsurv )

Ntot

=

s
" � (1� ")

Ntot

: (5.9)

There is also a systematic error involved in the determination of the cut e�ciency

using the procedure described above. It originates from the method used for obtain-

ing the true distribution of the variable and from the possible noise contamination

in such a distribution. This systematic error becomes signi�cant at higher ET due to

larger statistical 
uctuations that make it harder to determine the true distribution

of the variable.

5.4 The E�ciency of Jet Quality Cuts

For the determination of EMF and CHF cut e�ciencies, Normal and Restored jets

are combined. The HCF cut is however applied only to Normal jets since the Acra

can not re-calculate the HCF of the Restored jet. Therefore the HCF cut e�ciency

is determined for Normal jets only.

5.4.1 Electromagnetic Fraction Cut E�ciencies

To obtain a true EMF distribution from the data, the Z and the RMTE cuts are

applied to clean up the sample. EMF distributions with the same event cuts are

also obtained from the Monte Carlo (MC) sample. The MC sample is the one

used for D� jet energy resolution studies and is described in detail elsewhere [62].

The MC EMF distributions show that jet's EMF may extend all the way down to
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Figure 5.10: The �ts to the low
(left) and the high (right) ends of
the EMF distribution in the CEN
region for jet ET of 100{120 GeV.
Normal and Restored jets are com-
bined. Vertical lines indicate the low
and the high EMF cuts.
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Figure 5.11: The �ts to the EMF distributions. The left plot shows the �t to the
high end of the EMF distribution in the ICR for jet ET of 50{60 GeV. The right
plots shows �ts to the low and the high ends of the EMF distributions in the FOR
region for jet ET of 80{100 GeV. Normal and Restored jets are combined. Vertical
lines indicate the EMF cuts.

EMF = 0 and all the way up to EMF = 1, being higher at EMF = 1 [69]. The

same behavior is observed in the EMF distributions obtained from the data sample.

Therefore it is believed that after both event cuts are applied, the remaining jets in
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the EMF distributions are all good. Then Nfail is just the number of jets outside the

EMF cuts and Nsurv is the number of jets enclosed within the cut boundaries. The

nominal e�ciency and the statistical error are then calculated according to Eqs. 5.8

and 5.9.

To calculate the systematic uncertainty the two ends of the cleaned EMF

distributions are �tted to either a second order polynomial or a Gaussian, whichever

describes the distributions better judging by the �2 of the �ts. The �ts are per-

formed in the region between the cuts and are then extrapolated all the way to 0

and 1 for low and high ends of the EMF distributions. See Figure 5.10 for the CEN

region and Figure 5.11 for the ICR and the FOR regions.

Then the �tted function is assumed to be a true distribution of the EMF and

Nsurv is therefore equal to the integral of the �tted model with limits of integration

set at the cut values, while Nfail is calculated as the integral of the �tted functions

outside the cut values. The corresponding e�ciency is calculated using Eq. 5.8 and

the di�erence between this and the nominal value of the e�ciency is assigned a

systematic uncertainty.

5.4.2 Coarse Hadronic Fraction Cut E�ciencies

The coarse hadronic layers are located very deep in the calorimeters. There are two

reasons not to rely on the CHF distributions obtained from the Monte Carlo. One is

that the hadronic shower model in Geant (Gheisha) does not accurately simulate

the rare longitudinal 
uctuations in the shower tails. Second, in order to increase

the speed of the MC, D� uses a \Shower Library" to store a selection of hadronic

showers [47]. Simulated jets, following fragmentation, are constructed from this
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Figure 5.12: The CHF distributions in the CEN region for jet ET of 100{120 GeV
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Figure 5.13: The �t to the HCF
distribution in the CEN region for
jet ET of 100{120 GeV. Normal
jets only. Vertical line indicates
the HCF cut.

library of particle showers. The limited number of showers in this library further

worsens the representation of rare longitudinal 
uctuations deep in the calorimeter.

As mentioned earlier, the CHF cut is designed to remove mostly the MR
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jets. To obtain a true distribution then the MR region (1:0 < � < 2:2) is excluded

and all the event and the EMF cuts are applied beforehand. Then the CHF cut e�-

ciency is calculated from the resulting clean CHF distribution according to Eq. 5.8,

where now Nsurv is the number of jets with CHF < 0:4 and Nfail is the number of

jets with CHF � 0:4.

To estimate systematic error, the CHF e�ciency is calculated in the same

way but for the lower half of the calorimeter only, i.e. for 3:14 < � < 6:28. Fig-

ure 5.12 shows the CHF distributions used for the CHF cut e�ciency calculations

in the CEN region. The mean of the two values of e�ciencies obtained this way

is taken to be a nominal CHF e�ciency "CHF and the di�erence between the mean

and the two e�ciencies is assigned to the systematic uncertainty.
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5.4.3 Hot Cell Fraction Cut E�ciencies

To obtain a clean HCF distribution all event cuts as well as EMF and CHF cuts are

applied beforehand. Then, to a good approximation, the resulting distributions are

true HCF distributions (which is also con�rmed using the MC sample). Therefore

the nominal HCF e�ciencies "HCF and the statistical errors are calculated using

Eqs. 5.8 and 5.9, where Nsurv is the number of jets with HCF > 0:05 and Nfail is

the number of jets with HCF � 0:05.

To estimate systematic uncertainty on "HCF , the HCF distribution is �tted

to a second order polynomial starting at about the cut value of 0:05 (see Figure 5.13

for the CEN region and Figure 5.14 for the ICR and the FOR regions.). The �tted

function is then extrapolated below the cut and the systematic e�ciency is evaluated

using Eq. 5.8 where now Nsurv is the integral of the �tted function above the cut

and Nfail is the integral of the function below the cut. The di�erence between this

e�ciency and the nominal e�ciency is assigned to the systematic error.

5.4.4 Global Jet Quality Cut E�ciencies

The above described procedures for each jet quality cut are repeated in every ET

and �d bin. The statistical and systematic errors are added in quadrature to yield

combined (total) errors on the e�ciencies. The tabulated e�ciencies and their

uncertainties for each jet cut and in every pseudorapidity region are listed in refer-

ence [69].

Since jet quality cuts are applied in succession, as a �nal step, the e�-

ciencies for EMF, CHF, and HCF cuts are multiplied in each ET bin to give a
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combined global jet quality cut e�ciency "glob for Normal jets. To obtain "glob for

Restored jets, only EMF and CHF e�ciencies are combined because, as mentioned

earlier too, the HCF cut is not applied to Restored jets. The uncertainties in the

global e�ciencies are calculated by adding total uncertainties of individual jet cut

e�ciencies in quadrature.

The global jet e�ciencies are then �t to a straight line

"glob = p1 + p2 � ET (5.10)

in each �d bin and the obtained parameterization is presented in Table 5.1 for all

�d regions. The global jet quality cut e�ciencies along with the �nal �tted models

and associated error bands are presented in Figure 5.15 for Normal jets. The global

e�ciencies for Restored jets are rather similar in shape but generally slightly higher,

as expected, and for completeness are presented in reference [69]. The error band

on the �tted function has three contributions:

�"glob =
q
�2

1 +�2
2 +�2

3 ; (5.11)

where �1 represents the error propagation of the �tted function value as derived

from the errors in the parameters �p1 and �p2 and their covariance Cov(p1; p2):

�1 =
q
(�p1)2 + 2 � Cov(p1; p2) � ET + (�p2 � ET )2 ; (5.12)

�2 is a systematic error to account for the uncertainty due to the particular choice of

the �tted model and is estimated as a di�erence between the nominal linear �t and

the �t to the second order polynomial. Finally, �3 is the largest of the systematic

errors in the global e�ciency data points. The di�erence between the Normal and

the Restored jet quality cut e�ciencies is within 0:5%.
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"glob = p1 + p2 � ET

�d Normal Jets Restored Jets

region p1 ��p1 [%] p2 ��p2 [%/GeV] p1 ��p1 [%] p2 ��p2 [%/GeV]

CEN 99:47� 0:08 �0:004� 0:001 99:60� 0:06 �0:003� 0:001

ICR 99:65� 0:06 �0:004� 0:001 99:96� 0:04 �0:004� 0:001

FOR 99:20� 0:07 �0:005� 0:001 99:41� 0:08 �0:005� 0:001

Table 5.1: Parameterization of the global jet quality cut e�ciencies for Normal and
Restored jets and for all �d regions.

5.5 The E�ciency of Event Quality Cuts

In this section, we describe the methods used for the determination of missing

transverse energy fraction cut and vertex acceptance cut e�ciencies.

5.5.1 Missing Transverse Energy Fraction Cut E�ciencies

"MTE = p1

�d region p1 ��p1 [%]

CEN 99:98� 0:02

ICR 99:97� 0:02

FOR 99:97� 0:03

Table 5.2: Parameterization of the RMTE cut e�ciencies in three �d regions.

The 1=RMTE distributions clearly show a noise peak at about RMTE = 1. In the

past a double Gaussian model has been used to obtain a true distribution|the �rst

Gaussian describing the noise peak and the second Gaussian describing the rising

edge of the signal distribution. It is however hard, if not impossible, to imagine good
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Figure 5.16: The nominal (left) and the systematic (right) �ts to the 1=RMTE distri-
bution in the CEN region for leading jet ET of 100{120 GeV. Vertical line indicates
the RMTE cut.

QCD events that have 1=RMTE � 1. Therefore the double Gaussian method may

underestimate cut e�ciency [68]. For this reason, instead of two Gaussians, a second

order polynomial is �t to the 1=RMTE distributions starting from 1=RMTE � 1:43.

This �tted function is assumed to represent a true distribution of 1=RMTE and the

nominal e�ciency and the corresponding statistical error are calculated according

to Eqs. 5.8 and 5.9, where now Nfail is the integral of the �tted polynomial up to a

cut value, and Nsurv is the integral of this function above the cut value.

To estimate systematic uncertainty, the �t starts from the abscissa intercept

point of the nominal �tted model and the systematic e�ciency is evaluated in the

same way as the nominal e�ciency. (See Figure 5.16 for the CEN region.) Then

the di�erence between the nominal and the systematic e�ciencies is assigned as

systematic error.
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Figure 5.17: "MTE as a function of un-corrected leading jet ET in three �d regions.
Error bars shown are combined statistical and systematic uncertainties. The error
band on the �tted model is also indicated. The upper error band is truncated at
100%.
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This procedure is repeated in each ET and �d bin, the statistical and sys-

tematic errors are added in quadrature, and the �nal results are tabulated in refer-

ence [69]. Finally, the "MTE is �t in every �d region to a constant and this param-

eterization is presented in Table 5.2. The �tted models along with the estimated

error bands are shown in Figure 5.17 for all �d regions. The error band is obtained

in a similar way as for the global jet quality cut e�ciency parameterization except

in this case �1 = �p1 and the upper error band is truncated at 100%.

Event Scanning and Modi�ed RMTE Cut

In addition to the systematic studies of the data sample quality, many events (espe-

cially at highest ET 's) were also visually scanned using D� event display software.

The detailed analysis of the events with leading jet in the central pseudorapidity

region demonstrated that unacceptable level of contamination was passing the RMTE

cut of 0:7 [46]. Therefore, for pseudorapidities up to j�j = 0:7, the RMTE cut was

modi�ed: E/T had to be less than the larger of 30 GeV or 0:3Elj
T . The e�ciency

associated with this modi�ed RMTE cut was determined as a function of Elj
T to be

0:982 for Elj
T > 150 GeV, and 1:031�0:663�10�3Elj

T (1:0�Elj
T =300:0) for E

lj
T � 150

GeV. This cut and e�ciency were used in the cross section analysis for events with

leading jet in the central region (j�j < 0:7).

5.5.2 The Z-vertex Cut E�ciency

Application of the Z-vertex cut generally improves the quality of the data. How-

ever, in contrast with the rest of the quality cuts discussed, by its nature this cut is

more of an acceptance cut rather than a cut intended to directly remove background
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contamination. Therefore all events in the vertex distribution are assumed to be

\good" events and the e�ciency of this cut "Z is calculated according to Eq. 5.8,

where Nsurv and Nfail are simply the number of events passing and failing jZj < 50

cm, respectively. The error is considered to be purely statistical and is estimated us-

ing the binomial formula of Eq. 5.9. The results for each jet trigger are summarized

in Table 5.3.

Jet Trigger "Z [%]

Jet 30 89:55� 0:02

Jet 50 88:84� 0:02

Jet 85 88:15� 0:03

Jet Max 88:11� 0:05

Table 5.3: "Z for each jet trigger.
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CHAPTER 6

JET ENERGY SCALE

One of the primary purposes for using calorimeters in high energy physics experi-

ments in general, and in D� in particular, is to accurately measure the energy of

incoming objects of interest prior to their interaction with the detector. The jet

energy measured by the D� calorimeters is generally distorted by response e�ects,

uranium noise, spectator interactions, reconstruction, and �nite resolution. In D�,

the correction that on average restores measured jet energy to the �nal state parti-

cle level jet energy (i.e. prior to jet entering the calorimeters) is commonly referred

to as the jet energy scale (JES) correction. The linearity, hermeticity, and com-

pensating nature of the D� calorimeters allow separation of jet energy resolution

e�ects from the scale correction.

The determination of the jet energy scale (JES) in D� Run 1 has not,

however, been a trivial exercise. The lack of a central magnetic �eld and the un-

availability of test beam data at low energies and for a large sample of calorimeter

modules do not allow an in-situ calibration of jets from particles. Monte Carlo (MC)

simulations of the calorimeters do not mimic the jet energy response and resolution

to within uncertainties needed by many physics analyses. The jet energy calibration

is, therefore, not derived from the MC tuned to the data, but mostly from collider

data alone, employing various methods and techniques. In this chapter, we will �rst
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discuss methods for determining the D� JES and its subcomponents [74], followed

by the description of a novel and independent closure test of the entire JES and of

its results [75].

6.1 Determination of the D� JES

Given the measured jet energy (Emeas
jet ), the corresponding particle level energy

(Eptcl
jet ) is given by the following relation with R being the jet algorithm cone radius,

�|the pseudorapidity, L|the instantaneous luminosity, and E|the jet energy:

Eptcl
jet =

Emeas
jet � EO(R; �;L)

Rjet(R; �; E) � S(R; �; E) ; (6.1)

where EO(R; �;L) is the so called o�set energy due to underlying event and noise,

Rjet(R; �; E) is the calorimeter response, and S(R; �; E) is fraction of the jet

calorimeter shower contained inside the �xed cone size of the jet. The o�set correc-

tion is derived from studies of energy deposition patterns in minimum bias events,

the response subcorrection is measured using the missing ET projection method,

and out-of-cone and in-cone showering e�ects are determined from collider data

and Herwig particle level MC samples. In what follows, we discuss in more detail

each subcomponent of the D� JES.

6.1.1 The O�set Correction

The D� JES O�set correction removes the portion of the measured jet energy

that does not belong to the hard scattered jet. It is given as the energy density

in � � ' space, DO. This allows the use of DO for obtaining the O�set energy

EO contribution to a �xed-cone jet of arbitrary size, R, by multiplying the O�set
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Figure 6.1: The transverse en-
ergy density of physics underlying
event Due as a function of pseu-
dorapidity at

p
s = 1800 (smaller

sample) and 630 GeV (larger sam-
ple).

energy density by the \area" of a jet in the � � ' space, �R2. Several phenomena

of distinct origin and characteristics contribute to the O�set energy. It can be split

into two pieces: DO = Due +D�, where the Due represents energy due to physics

underlying event, while the term D� absorbs all e�ects of noise, pileup and extra

interactions.

The portion of jet energy due to the underlying event (UE) arises from the

spectator parton interactions in inelastic pp collisions. Depending on the physics

analysis, this contribution may or may not be desirable to remove. In the analysis

presented here, we are interested in high ET QCD behavior. Therefore, for the

determination of jet cross sections, we remove the energy due to the UE. Due is

measured as the energy density in the MINIMUM BIAS (MB) events, the data sample

collected with a requirement of inelastic collision in the beam crossing. In general,

the transverse energy activity in the MB events is so low that there are no hard jets

reconstructed|they do not make it past the 8 GeV jet ET threshold. Furthermore,

in order have no more than one inelastic collision in the events, the MB data sample
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is subject to the requirement of low luminosity of about 0:1� 1030 cm�2s�1.

However, in addition to the UE, the MB events still have contributions from

noise and pileup. To remove their contribution, the corresponding energy density is

measured in low luminosity ZERO BIAS events (ZB, see page 120). The di�erence in

the energy densities from low luminosity MB and ZB events thus gives a good estimate

of the underlying event density Due. It is measured as a function of pseudorapidity

and is shown in Figure 6.1 for the two center-of-mass (CM) energies. The UE

energy density appears to be fairly 
at in �. The peak in the range 0:7 � j�j � 1:2

is attributed to the miscalibration of the intercryostat detectors. Associated with

the soft interactions in a single pp collision, the underlying event is independent

of luminosity and of the number of pp interactions. It however increases with

increasing pp CM energy as this latter is accompanied by the growth in the particle

multiplicity as well as in the average energy per particle in the �nal state. The UE

energy density for the JES O�set correction is taken directly from the histogram in

Figure 6.1, where the Due values for �'s between the bin centers are obtained using

linear interpolation.

The second term in the JES O�set correction, D� is measured from a ZB

sample to account for noise, pileup, and extra interactions. The initial electronic

calibration of calorimeter cells shifts the average empty cell energy to zero. In D�,

the cells which have a measured electronic signal within two standard deviations

(�) from zero are not read out|to save signi�cant processing time and disk storage

space. This mechanism is referred to as zero suppression. However, in addition to

random electronic noise, in D� calorimeter cells, there is additional contribution

from radioactive decays of uranium. The uranium noise, unlike electronic, is not
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Figure 6.2: The contribution to
the JES O�set from uranium
noise, pileup, and additional pp in-
teractions is measured as a trans-
verse energy density, D�, shown
here as a function of pseudora-
pidity for di�erent luminosities in
units of 1030 cm�2s�1.

Gaussian or even symmetric. Because of zero suppression, the asymmetric tails

of the total noise, outside a 2� window centered on zero, on average create a net

positive energy in a cell. The magnitude of this contribution depends on the number

of zero suppressed cells in a given event. Therefore, D� from the ZB data must be

extrapolated to a value consistent with average occupancies for jet data. The rather

limited number of jets in non-zero suppressed MB data introduces a large uncertainty

of �0:25 GeV in the measured value of D�. Figure 6.2 shows D� as a function of

pseudorapidity at di�erent luminosities. The measurement is �tted to an eight-

parameter functional form which introduces additional statistical and systematic

errors due to the �t [74].

The uncertainty due to the entire O�set correction is the dominant source of

error at lowest jet ET 's, but is negligible at high ET 's. The systematic uncertainties

related to this analysis method are considered to be correlated in ET , while the

statistical uncertainties are uncorrelated as a function of pseudorapidity.
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6.1.2 The Response Correction

The electronic signal measured in the calorimeter cells is mapped onto energy using

calibration from single particle test beam data of individual modules assuming ideal

instrumentation and linear response1. However, the response to low energy particles

is non-linear. Furthermore, dead material in front of the calorimeters (such as the

cryostat walls, for example) distorts the response. And when many particles are

put together in a jet, calorimeter module-to-module non-uniformities also a�ect the

signal. The net e�ect is that the jet response is below unity.

The jet response in D� is measured from the photon{jet data using the

missing ET projection method. The idea is to employ conservation of energy in the

transverse plane along with the better understood purely electromagnetic response

to photons (in most � regions) in order to derive the hadronic response to the jet.

In an ideal calorimeter, the total missing transverse energy in photon{jet events

would be zero, ~E/T = 0. A good estimator of the total ~E/T is the vector sum of

the transverse energies of the photon and the recoil hadronic system. However, in

real calorimeters, the response to both purely electromagnetic and recoil objects is

di�erent from unity. Therefore, the measured photon and recoil transverse momenta

may not balance perfectly, even on average:

Rem
~E

T +Rrecoil

~Erecoil
T = � ~E/T ; (6.2)

where Rem (Rrecoil) is the calorimeter response to electromagnetic (recoil) object.

The energy scale of D� calorimeters for electromagnetically interacting particles is

determined [76] from Z ! e+e�, J= , and �0 data samples. After electromagnetic

1The sampling fractions remained as measured in the test beams. However, the gain constants
in electromagnetic sections of calorimeters were later adjusted based on the precision measurement
of the Z mass.
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calibration and the recalculation of the event ~E/T , Eq. (6.2) can be rewritten in the

following form: ~E

T +Rrecoil

~Erecoil
T = � ~E/T , or:

1 +Rrecoil
~̂n



T � ~Erecoil
T

E

T

= �~̂n



T � ~E/T
E

T

; (6.3)

with ~̂n



T a unit vector in the direction of the photon.

In the presence of o�set and showering losses, in the photon{jet data, Rrecoil

is the energy response to the calorimeter jet, Rjet. Since the transverse momenta

of the photon and recoil should balance at the particle level (~̂n



T � ~Erecoil
T = � ~E


T ),

Eq. (6.3) can be rewritten for Rjet as:

Rjet = 1 +
~̂n



T � ~E/T
E

T

: (6.4)

The second term on the right hand side of Eq. (6.4) is the fraction of the ~E/T

projected onto the direction of the photon, hence the name of the method|the

missing ET projection fraction, or MPF.

Jet response Rjet is expected to be energy dependent. However, studying

Rjet as a function of jet energy in the MPF method poses a problem. The pho-

ton and jet energy resolutions introduce smearing bias in the measurement. Since

the electromagnetic energy resolution is much better in D� than hadronic reso-

lution, the dominant e�ect is from the jet energy resolution. In addition, steeply

falling prompt photon cross section, trigger and reconstruction thresholds, as well as

event topology, all contribute biases which must be removed. Most of these biases

and smearing e�ects are removed by introducing a better jet energy estimator, the

quantity E 0 = E

T cosh �. It is composed of two relatively well measured quantities:

photon transverse momentum E

T and jet pseudorapidity �. The response is stud-

ied as a function of E 0, and then mapped onto jet energy by determining average
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Figure 6.3: Parametric simulation of the Rjet measurement. A �t to Rjet \mea-
sured" from the simulated data, when binned in terms of E 0 to remove resolution
e�ects, agrees very well with the input response (top). The agreement between the
�t and the input function is also excellent given di�erent reasonable assumptions
for the ET dependence of the 
 cross section, such as E�5

T , E�4
T , and E�2

T (bottom).

measured jet energy in bins of E 0.

This method is tested using parametric MC simulation where photon{jet

data are generated with a given ET dependence. The photon and jet energies are
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scaled by the response measured in the data. They are also smeared according to

the corresponding fractional energy resolution parameterizations. The response is

then measured from this simulated sample using the MPF method. The top plot

in Figure 6.3 shows the input response (solid line) along with the extracted Rjet

binned in terms of the jet energy (open circles) and in terms of jet energy estimator

E 0 (�lled circles). It is seen that the resolution bias, present if binned in terms

of Ejet, is removed when binned in terms of E 0. The bottom plot shows excellent

agreement between the �ts to Rjet versus E
0 and the input response function under

various reasonable assumptions on the ET dependence of the photon cross section,

such as E�5
T , E�4

T , and E�2
T .

In order to achieve jet energy calibration at high pseudorapidities, Rjet is

studied as a function of �. First, the CC's and EC's are put on the same footing by

applying a cryostat factor Fcry measured as Fcry � RCC
jet =R

EC
jet = 0:977� 0:005. It is

obtained from a �t to the ratio of the measured Rjet versus E
0 dependences in the

CC/EC overlap region. Fcry is a constant as a function of E 0 as is expected since

the CC's and EC's are designed and constructed with the same technology. The

uncertainty due to the cryostat factor is assumed to be correlated as a function of

ET and �.

The intercryostat region (ICR), on the other hand, requires extra care.

The dependence of Rjet on � is expected to be a smooth function arising via the

Rjet dependence on energy Rjet � lnE, where E = ET cosh �. Therefore, to make

calorimeters uniform in �, jet response as a function of � is �t to a functional form:

Rjet = a + b ln[cosh �], where Rjet is measured from both photon{jet and jet{jet

data. In the former case, the photon is kept central and in the latter case one of the
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leading jets is required to be central, i.e. j�j < 0:5. The residuals from the �t are

then �t in the ICR in bins of detector � of 0:1 rad as a function of the central jet ET ,

giving the correction factor F�. The ICR correction is performed after the cryostat

factor correction and before the energy dependent correction of the response. In the

ICR, the � dependent correction contributes about 1% error, which is larger above

� = 2:5. This error is assumed to be uncorrelated as a function of ET and �.

The energy dependence of Rjet is measured after the O�set (to remove the

energy not associated with the hard parton scattering) and the � dependent (to

make the calorimeters uniform as a function of pseudorapidity) corrections. The

fact that Fcry is independent of E 0 allows complementing the hadronic response

measurement in the CC's by the data points from the EC's which|because forward

jets have higher energies than the central jets with the same ET|thereby extends

the jet energy reach from about 150 GeV to nearly 300 GeV (after E 0 ! Ejet

mapping), as is seen in Figure 6.4 for 0:7 cone-jets.

Motivated by the logarithmic dependence of the electromagnetic fraction

of the hadronic shower energy, hfemi, on the incoming energy E, i.e. hfemi � lnE,

Rjet is parameterized by the functional form:

Rjet = a + b lnE + c(lnE)2 : (6.5)

The �t of Rjet to this function is shown in Figure 6.4 along with the data points.

The top plot in Figure 6.4 is presented in the semi-logarithmic scale on the x{

axis, while the bottom plot is in the linear scale. Along with a nominal value of

the �t, shown is the uncertainty band corresponding to the 68% con�dence region

in the correlated �t parameter space. The errors due to the �t are the dominant

sources of uncertainties in the measurement of Rjet, contributing an error of about
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Figure 6.4: Rjet versus jet energy on a semi-logarithmic (top) and linear (bottom)
energy scales for the 0:7 cone jet algorithm. The outer band corresponds to the
uncertainty in Rjet equivalent to the 68% con�dence region (a volume de�ned by
the �2 � �2min + 3:5 surface) in the correlated three (�t) parameter space.

1:5=0:5=1:6% for 20=100=450 GeV jet energies. There is also an additional � 0:5%

error from the W background in the photon sample. Most of the events in the


{jet data are not two body processes. This topology bias in the Rjet measurement

is compensated by another bias due to contamination from highly electromagnetic
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jets faking photons.

The uncertainties introduced by the �t of Rjet as a function of energy

are strongly correlated in energy. The standard correlation coe�cients between

the responses measured at each of the 11 uncorrected2 energy levels are obtained

by independently 
uctuating the �tted parameters many times within the volume

constrained by �2 � �2min+3:5, corresponding to the 68% con�dence volume in the

three parameter space. The hadronic response correlation matrix for 0:7 cone size

jets can be found in reference [74]. The uncertainty associated with the hadronic

response is not important at low ET 's but becomes dominant at high ET 's.

6.1.3 The Showering Correction

The showering correction arises from the fact that the particle showers originating

from jets entering the calorimeters may deposit a fraction of the \jet-associated"

energy outside the calorimeter level algorithm cone. By jet-associated energy we

mean the energy that would have been contained within the algorithm cone at

the particle level, i.e. prior to jet entering the calorimeters. In addition, upon

entering the calorimeters, particles from the outside of the algorithm cone in the

particle level, develop calorimeter showers which may spill additional energy into

the calorimeter cone-jet. The combination of these e�ects must be measured and,

if necessary, the corresponding correction must be applied to measured jets.

The showering correction used in this analysis is entirely derived [77] from

the Monte Carlo (MC) sample generated by Herwig and put through full detector

2In this context, uncorrected energy means energy not corrected for response. The low-ET

bias, o�set, and �-dependent corrections have already been applied.
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simulation based on Geant [78]. In the MC, measured jet energy can be de�ned

as Emeas
jet =

X
Rcell<0:7

Ecell, where the sum is over all calorimeter cells within the radius

of 0:7 of the jet centroid. On the other hand, the true energy of the jet is given by

Etrue
jet =

X
Rpart<0:7

Ecell, where the sum runs over all calorimeter cells that receive energy

from the particles from inside the particle level algorithm cone, Rpart < 0:7. The

showering correction S of Eq. (6.1) is then de�ned as the ratio S = Emeas
jet =Etrue

jet .

It turns out that the response correction derived from the MPF method

partially accounts for showering e�ects as well. There is a bias in the MPF method

because it is based on the transverse momentum balance in 
{jet data and, as

such, is better suited to correct jet momentum rather than jet energy. The particle

showers in the calorimeter develop laterally as well as longitudinally, causing the jet

widening and resulting in a larger decrease in jet momentum than in jet energy. This

loss in jet momentum compensates a fraction of the true showering loss. Therefore,

in order to use the MPF{derived response to calibrate jet energy, only the residual

showering correction must be measured.

This MPF bias can very well be modeled by introducing a variable called

jet limit which is the distance in � � ' space, larger than the algorithm cone size,

within which the total energy of the particle level jet would be contained in the

calorimeter. It is obtained by examining energy 
ow pro�les of jets as a function

of a distance from the jet centroid. Jet limit is estimated as the maximum distance

from the jet center up to which the jet-associated energy extends. It is a function

of pseudorapidity and increases with �. The size of the jet limit varies from 1:0 in

the central � region to 1:8 at �'s above 3:0.
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Figure 6.5: The parameterization of the showering correction (actually, S�1) as a
function of the response corrected jet energy in two intermediate pseudorapidity
regions. The dashed lines indicate 1� total uncertainty band.

With the jet limit, the de�nition of the true jet energy is modi�ed to:

Etrue
jet =

X
�
Rpart < 0:7

Rcell < jet limit

�Ecell : (6.6)

It is this de�nition of the true energy that is used in this MC based derivation

of the residual showering correction S = Emeas
jet =Etrue

jet . The showering correction

derived in this way can therefore be applied to the hadronic response corrected jets.

The showering correction as a function of jet energy is studied in eight

pseudorapidity intervals of 0:5 units in width from � = 0 up to j�j = 3:5. The
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Figure 6.6: The parameterization of the showering correction (actually, S�1) as a
function of the response corrected jet energy in two forward-most pseudorapidity
intervals considered. The dashed lines indicate 1� total uncertainty band.

correction is �tted to a 
at line in the regions j�j � 2:5 and to a functional form

a=Ejet + b in the forward-most � bins. To obtain a smooth parameterization as

a function of �, however, an interpolation between � bins is necessary. This is

somewhat complicated by the fact that the showering correction exhibits no energy

dependence for j�j � 2:5, but becomes energy dependent at higher �'s, as can be

seen in Figure 6.6. To account for this behavior, the following functional form is

chosen to �t the showering correction spanning all pseudorapidities:

S�1 = 1:0088 + A(E)�2 +B(E)�4 : (6.7)
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and and pseudorapidities smaller than 1:75. For higher pseudorapidities, the energy

dependence is allowed and no discontinuity is observed around j�j = 1:75. The �nal

correction, S�1, as a function of pseudorapidity for several jet energies is shown in

Figure 6.7.

The sources of uncertainty are: error in the �t parameters, error due to

the disagreement between showering e�ects in the data and in the MC samples

(2% for all � regions), and error associated with the actual value of the jet limit

variable. This latter error is measured by varying the jet limit above and below its

nominal value and remeasuring the showering correction in each case. Deviations

from the showering correction corresponding to the nominal value of jet limit are

then assigned to the systematic uncertainty. Illustrations of the measured showering

correction (actually the inverse of S) in the four pseudorapidity regions are shown

in Figures 6.5 and 6.6. The uncertainty band includes the three sources of error

added in quadrature. The uncertainties in the cross sections due to jet limit are

considered to be anticorrelated in ET within a given j�j region and fully correlated

in � for similar energies. Statistical (�t) and MC closure errors are completely

uncorrelated both in ET and �.

The showering correction described here is implemented in the most recent

version of the D� jet energy scale, Cafix 5.2. This is the only di�erence between

Cafix 5.2 and its predecessor JES version, Cafix 5.1. The detailed description of

the showering correction implemented in Cafix 5.1 is contained in reference [74]

and discussion of the di�erences between the old and new showering corrections is

presented in [77].
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6.2 Independent Closure Test of the JES

In the course of this analysis, we also developed a method for testing the entire D�

JES based on transverse momentum balance in photon{jet and jet{jet data. The

detailed discussion of this Closure test is presented elsewhere [75]. Here we will

concentrate on the key issues of the method and will discuss the �nal results of the

test for the two most recent versions of the D� JES, Cafix 5.1 and Cafix 5.2.

6.2.1 The Method

Suppose that in a collider event along with a reconstructed jet, whose energy cal-

ibration we would like to examine, there is a calorimeter object present whose

energy is well measured. Then the transverse momentum3 balance between this

well-measured energy cluster and the jet can be directly employed to test the en-

ergy calibration of the latter. Since the energy scale for electromagnetic (EM)

objects (such as electrons and photons) showering entirely in the EM sections of

the D� calorimeters is very accurately determined from the Z, J= , and �0 data

samples [76], the large pT direct photon production at the Tevatron in the events

with exactly one photon and one jet would be an example of such events, with the

photon in the role of a well-calibrated calorimeter object.

In real life, however, it is hardly possible to obtain such ideal reconstructed

events|usually there are more objects present in the calorimeters as a result of

next-to-leading or even higher order processes. While we still would like to select

events with two leading (i.e. highest ET ) objects, one of which is well calibrated, in

3All calorimeter objects are considered to be massless, hence throughout we use transverse
momentum (~pT ) and transverse energy ( ~ET ) interchangeably.
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Figure 6.8: The illustration of the
JES Closure method. In the x{y
transverse plane, we calculate the
ratio R of the total ET projec-
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taining a well-calibrated calorime-
ter object (with Jet 2 and/or Jet
3 in the picture) to that from the
other halfplane (
 or Jet 1 in the
picture for the photon{jet and jet{
jet data, respectively).

order to signi�cantly improve statistics and make the test of the ET balance more

precise, we generalize to include the lower ET clusters in the following way. In the

transverse plane we introduce a unit vector ~̂n in the direction of the well-measured

energy deposit. The line perpendicular to ~̂n divides the transverse plane into two

halfplanes and all objects in the event can be classi�ed as belonging to either of

them. For each of the halfplanes we calculate the total ET projection of all objects

in that halfplane onto the direction ~̂n. Finally we calculate the ratio R of the total

ET projection from the halfplane not containing a well-calibrated calorimeter object
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to that from the other halfplane. Mathematically R can be written as:

R =

X
( ~Ei

T
�~̂n)< 0

j( ~Ei
T � ~̂n)j

X
( ~Ei

T
�~̂n)> 0

( ~Ei
T � ~̂n)

; (6.8)

where ( ~Ei
T � ~̂n) is a scalar product of the two vectors. One would like to study R as

a function of the energy and the pseudorapidity of the reconstructed jet under con-

sideration. The closeness of such a ratio R to unity is a measure of the correctness

of the jet energy scale.

As mentioned earlier, the photon{jet (
{jet) data provides us with a very

good sample for testing the JES for relatively low ET jets using R in Eq. (6.8).

Unfortunately, we quickly run out of statistics in the 
{jet sample as we go to

forward regions of the detector because the 
{jet cross section at the Tevatron is

smaller by three orders of magnitude than that of dijet production, and because it

also falls rather steeply with both ET and pseudorapidity. Therefore, we use the


{jet data to test the JES primarily in the central region, where the jet{jet data do

not help. Once we establish that the jets in the central region are well calibrated,

we then move to the jet{jet data sample, where we request that one of the two

leading jets be central and the other one be forward. In the jet{jet data we then

test the JES of the forward jet against that of the central jet (that is, the central jet

now plays the role of a well-calibrated energy cluster for the purpose of constructing

Eq. (6.8)) with increased statistics for the energy and the pseudorapidity coverage

of interest. The 
{jet data is also used in the forward regions to verify the jet{jet

results in the kinematic range where both samples overlap.

We note that the generalizedR which includes all reconstructed calorimeter

objects for estimating the ET balance in the event is, by de�nition, sensitive to the
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unclustered energy (UCE) of the event, which results from the Reco ET thresholds

for reconstructing calorimeter objects, the most notable of which is the ET threshold

of 8 GeV in the standard D� cone jet �nder (see page 129). Therefore, the e�ect

of the UCE must be estimated and removed prior to interpreting R of Eq. (6.8) as

a measure of the ET balance in the event.

In addition, depending on the physics of the event, R may test the ET

balance at either parton or particle level. In the 
{jet data, the photon energy is

fully contained and the photon should directly balance the �nal state hard parton.

Thus the ET balance between the leading photon and jet tests the JES at the parton

level whereas in the jet{jet sample the ET balance between the two leading jets is

the test at the particle level. There is a possible loss of energy when going from

parton to particle level jets due to the clustering algorithms applied for the jet

�nding at each level. However, the purpose of the D� JES is to correct calorimeter

jets to only particle level jets. Therefore, when drawing conclusions from the ET

balance studies in the 
{jet data regarding the JES, one needs to examine and take

into consideration parton to particle energy di�erence for the jets.

Finally, studying R as a function of energy is challenging too. This is

because binning the distributions of R in terms of the energy of the forward jet

may bias the ratio due to the combined e�ect of the �nite jet energy resolutions in

the calorimeters and the steeply falling jet production cross section. Consider the

jet{jet sample with the central and the forward leading jets and suppose we bin

R in terms of the forward jet energy. Then, in a given energy bin, we will have

more of the lower particle level energy jets which have 
uctuated high due to the

energy smearing than the higher particle level energy jets which have 
uctuated low.
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However, we have made no constraint on the energy of the corresponding central jet

in the event|the jet energy smearing is completely uncorrelated from jet to jet. As

a result, the ratioR of Eq. (6.8) will be biased towards the higher values. Therefore

one needs to �nd an unbiased estimator of the forward jet energy and use it instead.

6.2.2 Systematics

JES Closure for Central Pseudorapidities

In case of 
{jet data, with jets corrected using Cafix 5.1, we studied the ratio

R
j as a function of E 0 = E

T � cosh(�jet) since it has been demonstrated (in a

slightly di�erent context, see page 196) that E 0 is an unbiased estimator of the jet

energy as it is constructed from two relatively well measured quantities: photon

transverse momentum E

T and leading jet pseudorapidity �jet . An attempt was

made to determine the e�ects of unclustered energy (UCE) on R
j . Unfortunately,

due to limited statistics we were not able to extract the UCE correction in the 
{jet

data, although the jet{jet results, discussed later, suggest it probably is di�erent

from zero and without such correction R
j would appear slightly lower than unity

for low energies. As mentioned earlier, the ET balance test in case of 
{jet data

is a test at the parton level rather than at the particle level. In order to estimate

possible losses in the jet momentum when going from parton to particle 0:7 cone

jets, we performed a dedicated MC study. We generated a Herwig MC sample and

ran the D�Pjet algorithm4 to �nd parton and particle jets. In order to avoid any

e�ects of the UCE in the MC, we set the ET threshold in the D�Pjet algorithm

4D�Pjet algorithm [79] is identical to the standard D� jet reconstruction scheme except its
input is MC partons or particles instead of calorimeter towers.



210

to a rather low value of 2 GeV. The particle jets were matched up with the closest

parton jets in ��' space. Our Herwig MC simulations suggest that particle level

0:7 cone-size jets have on average 1{2% less ET than the corresponding parton level

jets. The e�ect decreases with increasing ET , or increasing pseudorapidity, of the

jets [75].

Based on the results of the ET balance study in the 
{jet data, presented

in Figures 6.9 and 6.10 with open circles, we conclude that Cafix 5.1 is correct

to within 1{2% up to the pseudorapidity of 2:0 and the ET 's covered. While the

2:0 � j�j < 2:5 region might be somewhat unclear, the 2:5 � j�j < 3:0 region

suggests that the jets lack some energy at these high pseudorapidities. It is clear

that Cafix 5.1 works rather well in the central (j�j < 0:4) region. As was discussed

earlier, the most recent D� jet energy scale, Cafix 5.2, has a new showering

correction implemented. Cafix 5.2 is nearly identical to Cafix 5.1 at low �'s

but corrects the lack of energy in jets at higher pseudorapidities. Therefore, 
{jet

studies are not repeated with Cafix 5.2. The results of jet{jet studies for the

two most recent D� jet energy scale versions are discussed in the following section,

con�rming the expectation that Cafix 5.2 is a better JES for forward jets.

JES Closure Extension to High Pseudorapidities

To extend the limited ET coverage (up to about 120 GeV) and to improve statistics

available in the 
{jet data, we next turn to the dijet events where we require either

of the leading jets be central, while the other one be forward. Having established

that the JES for central jets is correct, we now can test the JES of the other, more

forward jet.
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{jet data are overlayed for the purpose of qualitative comparison|note
that the jet{jet data here are not corrected for the UCE. In both data samples, jet
energy scale correction used is Cafix 5.1.
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For jet{jet data samples, we have determined that a di�erent variable, �E 0,

de�ned as:

�E 0 =
1

2
(ECEN

T + EFOR

T ) � cosh(�FORjet ) (6.9)

is the most unbiased estimator of the forward jet energy. Figure 6.11 shows the

ratio Rjj when the forward jet pseudorapidity is 1:6 � j�j < 2:0 binned in terms

of the three candidates for the forward jet energy estimator: E 0|now de�ned as

E 0 = ECEN

T � cosh(�FORjet ) in an analogy with the corresponding quantity in case of


{jet data, EFOR|energy of the forward jet, and �E 0 of Eq. 6:9. Comparing this to

the 
{jet data in the same pseudorapidity region (open circles in the top plot in

Figure 6.10), one concludes that binning in terms of �E 0 indeed provides the most

unbiased determination of Rjj . Binning in terms of EFOR biases Rjj high, as is

expected. In addition, it is clear that binning in terms of E 0 for jet{jet data biases

Rjj low, and therefore E
0 must be discarded as candidate for an unbiased estimator
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Figure 6.13: Illustration of the derivation of the unclustered energy correction in
jet{jet data.

of the forward jet energy. To the extent that jet energy resolutions are the same

in the Central and End Calorimeters, low E 0 bias is exactly the inverse of the high

bias seen when binned in terms of EFOR.
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For further checks of these conclusions, a dedicated Herwig particle level

MC sample was generated. Once again, in order to avoid any possible e�ects of the

UCE in the MC, we set the jet ET threshold to 2 GeV in the D�Pjet algorithm.

In the particle level MC there is no energy smearing except for a rather small

e�ective particle level \energy resolution" arising from 
uctuations in out-of-cone

particle emission. This e�ect has been well understood in the course of jet energy

resolution studies, and in that context is often referred to as \Particle Level (Dijet)

Imbalance" [80]. Therefore, one would expect that the results of binning in either

of the three variables would not be di�erent. The top plot in Figure 6.12 con�rms

this expectation. It also suggests that at the particle level, without the UCE, jets

balance to within 0:5%, implying that the UCE{corrected Rjj from jet{jet data is

a good measure of jet ET balance at the particle level, and as such can be used to

test the entire JES.

In addition, we smear MC particle level jets by the energy resolution (see

chapter 9, for example) and check if this indeed introduces a bias similar to what

is observed in the jet{jet data. In the bottom plot of Figure 6.12, Rjj is shown

as a function of the three variables EFOR, E 0, and �E 0 from the MC, where now

particle level jets are smeared by the jet energy resolutions from [80]. Con�rming

our hypothesis, the bias appears in Rjj when it is binned in terms of either EFOR or

E 0, while if binned in terms of �E 0 the ratios remain unbiased.

We stress that, as it can be seen from Figures 6.11 and 6.12, the binning in

terms of �E 0 actually removes the ET resolution bias to within 1% rather than just

averaging the two biases seen when binned in terms of EFOR and E 0. The absence of

bias in �E 0 might be a�ected by the large di�erences between the central and forward
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Figure 6.14: Rjj as a function of �E 0 is shown in three pseudorapidity regions after
the unclustered energy correction is applied.

jet energy resolutions. Based on the available resolutions, we rather conservatively

estimate the di�erence between the central and forward resolutions to be 20%. We

once again smear the MC particle level jets, but now forward jets are smeared by

20% smaller resolution than what is measured in [80], and central jets are smeared
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by the actual measured central resolution. Open squares in the bottom plot of

Figure 6.12 show the resulting Rjj as a function of �E 0. Once again, no signi�cant

bias is observed. Based on these tests, we conclude that, in the case of jet{jet data,

the best estimator of the forward jet energy is �E 0 which is free of ET resolution bias
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to within about 1%.

Having convinced ourselves that Rjj as a function of �E
0 is an unbiased and

sensitive measure [75] of the correctness of the JES, we next compare results from

jet{jet data to those obtained earlier from 
{jet data. Filled circles in Figures 6.9

and 6.10 show the results from jet{jet data overlayed with previously discussed 
{jet

data. (For the purpose of these plots, in both data samples, jets are corrected with

Cafix 5.1). While one needs to be careful when directly comparing the results of

the ET balance from 
{jet and jet{jet data (because in the former it is a test at

the parton level and in the latter|at the particle level), the agreement between the

two is excellent.

Finally we study the e�ects of the UCE on Rjj . We apply 8 (default), 10,

12, 14, 16, and 20 GeV cuts (Ecut
T ) on the uncorrected ET of non-leading jets and

examine Rjj as a function of E
cut
T . Increasing the value of Ecut

T results in an obvious

trend of decrease of the ratio Rjj , see for example Figure 6.13. In order to correct

for the e�ect of the UCE, we �t a straight line to the ratios as a function of Ecut
T , and

extrapolate the �tted function down to Ecut
T = 0 GeV. This extrapolated value of

the �tted line is then taken as a UCE{corrected value for Rjj . The UCE correction

is derived and applied in every pseudorapidity region.

6.2.3 The Results for Cafix 5.1 and Cafix 5.2

The Rjj as a function of �E
0 after the UCE correction for Cafix 5.1 is �nally shown

in Figures 6.14 and 6.15. In the central and intercryostat pseudorapidity regions

Rjj is consistent with unity to within about 1{1:5%, ignoring the last data points

in 0:8 � j�j < 1:2 and 1:2 � j�j < 1:6 which have larger statistical errors and have
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Figure 6.16: Rjj as a function of �E 0 is shown in three pseudorapidity regions after
the unclustered energy correction is applied.


uctuated by about 2:5% below unity. However, in the forward pseudorapidity

regions (i.e. j�j > 1:6) we start to see some de�cit in the forward jet energy. In

1:6 � j�j < 2:0, the Rjj is consistent with unity to within about 1:5% up to the

energies of 400 GeV, and drops below unity by about 2:5% near 500 GeV in energy.
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the unclustered energy correction is applied.

In 2:0 � j�j < 2:5, deviations from unity are within 2% at and below 400 GeV

and drop below unity by as much as 3{4% for energies above 400 GeV. Finally, in

2:5 � j�j < 3:0 we see de�ciency of about 4{5% in the forward jet energy.



222

To reiterate, Cafix 5.1 is veri�ed to be correct to within its uncertainty

band in the range it is investigated. Our results suggest, however, that Cafix 5.1

systematically undercorrects jets at high pseudorapidities. The di�erence between

the nominal ratio and unity in 1:6 � j�j < 2:0 (2:0 � j�j < 2:5) pseudorapidity

region grows from about 1:5% (2%) at and below 400 GeV of energy up to about

2:5% (4%) above 400 GeV; in 2:5 � j�j < 3:0, the deviation from unity is about

4{5% throughout the energy range covered.

Finally, the results of the JES Closure test for the most recent version

of the D� jet energy scale, Cafix 5.2, are presented in Figures 6.16 and 6.17.

At low rapidities, Cafix 5.2 closes as well as Cafix 5.1, perhaps overcorrecting

central jets slightly, by about 0:5%, but well within the uncertainties of the JES and

the test itself. It seems to overcorrect within 2{3:5% in the pseudorapidity region

1:6 � j�j � 2:5 but, again, the closure is within the systematic errors. However,

Cafix 5.2 signi�cantly improves the forward jet calibration at j�j � 2:5 compared

to its predecessor, Cafix 5.1. To summarize, closure of the current D� JES scale,

Cafix 5.2 is good within the systematic uncertainties associated with both the

JES and the closure method. It does as well as Cafix 5.1 at low �'s and improves

the jet calibration at highest pseudorapidities. As this jet cross section analysis

extends to j�j = 3:0, we shall use Cafix 5.2 JES version to obtain �nal physics

results. A more detailed discussion of the JES errors as they pertain to the cross

section measurements is deferred until later chapters.
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CHAPTER 7

LUMINOSITY STUDIES

For cross section analyses, the precise measurement of integrated luminosity L be-

comes of primary importance, setting the normalization of the measurement. It

is obtained by summing up measured (primarily by Level � hodoscopes) instanta-

neous luminosities L over a speci�ed period of time, and for Run 1B can be denoted

as:

L =
Z Run 1B

Ldt : (7.1)

Without going into details on how L is measured at D�, we note that the resulting

integrated luminosity is corrected for Level � detector acceptance, beam contami-

nation, and events with multiple interactions, and is measured for each trigger to

account for individual prescales and dead times. The integrated luminosities for

the four jet triggers used in this analysis as taken from the Production Data Base,

PDB, are listed in the beginning of chapter 4 (page 124). However, it turns out

that additional corrections are required and we discuss them next.

7.1 Luminosity Matching

There are discrepancies observed among trigger versions 8 and versions 9 and 10,

and luminosities for triggers Jet 30 and Jet 50 are generally poorly determined [46].

To correct for these e�ects, we begin by taking luminosities for triggers Jet 85 and
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Jet Max, versions 9 and 10, from the PDB. Jet ET spectrum derived from Jet Max

trigger version 8 shows a 10% mismatch relative to that derived from versions 9

and 10 only of the same trigger. The luminosity of version 8 Jet Max has been

adjusted so that the dijet mass spectrum for version 8 matches that for versions 9

and 10. This adjustment is also applied to Jet 85. Thus, the 54703 and 91884 nb�1

luminosities for Jet 85 and Jet Max, respectively, are 0.7% below the uncorrected

PDB values. This di�erence is added linearly to the recommended 5.4% error on

the PDB value resulting in a total error of 6.1%.

PDB luminosities of Jet 30 and Jet 50 are accurate only to 10% because

the e�ciency for the one-interaction requirement at Level � has an unmeasured

dependence on luminosity. The correct luminosity has been determined by matching

the jet ET spectrum from Jet 50 to that from Jet 85 above the 99% e�ciency

threshold of about 130 GeV of ET of the latter, more restrictive trigger. This

introduces a 1:0% statistical error. Finally, the ET spectrum from Jet 30 is matched

to that from corrected Jet 50 above the 99% e�ciency threshold (about 90 GeV

of ET ) of the more restrictive Jet 50 trigger with a 1:4% statistical error. The

matching error for Jet 30 is then given by 1:1% and 1:4% added in quadrature, or

1:7%. These errors are added to the 6:1% error on Jet 85. The �nal Jet 30 and

Jet 50 luminosities are then 339:0 and 4612:6 nb�1 with errors of 7:8% and 7:1%,

respectively.

7.2 Luminosity Dependence of the Cross Sections

The probability of multiple interactions in a bunch crossing increases with higher in-

stantaneous luminosity. Multiple interactions at high luminosities may a�ect event
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reconstruction in three ways. First, there might be a pile-up|luminosity depen-

dent residual energy in the calorimeters from the previous bunch crossing. Second,

there might be extra energy coming from multiple interactions within a given bunch

crossing. This excess energy obviously is not related to the hard primary interaction

we intend to study. Lastly, due to multiple interactions within a bunch crossing,

the vertex of the primary interaction might be mismeasured by the tracking system.

This may result in mismeasurement of kinematic variables of the objects of interest

in the calorimeters. By \luminosity dependence" we generally mean the combined

e�ect of all the above on the cross section measurement. It must be noted, however,

that o�set subtraction of the D� jet energy scale (JES) [74] and ~HT based revertex-

ing [46, 53] correct for e�ects of pile-up and extra interactions, and misvertexing,

respectively. In this study [81] we look for any residual e�ects these phenomena

may have on the di�erential cross section of single inclusive jet production at D�.

Obviously the physical origin of all these e�ects lies in the number of multiple (or

extra) interactions increasing with luminosity.

Any such luminosity dependence may a�ect either the shape or the normal-

ization (or both) of the observed cross sections at higher luminosities. We inves-

tigate the two possible e�ects separately, and henceforth refer to them as \shape"

and \normalization" studies, respectively.

7.2.1 Shape Studies

The probability of multiple interactions at instantaneous luminosities1 (L) of less
than 5 is at most 18%, while for L > 10, this probability is at least 46%. Therefore

1Unless otherwise noted, throughout this note we use dimensionless instantaneous luminosity,
which must be scaled by a factor of 1030 cm�2s�1 to obtain a proper value of L.
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Figure 7.1: Rtot
low is �t to three models: P0 (solid line), P1 (dashed line), and P2

(dotted line). Shown here are �ts in j�j < 0:5 and 1:5 � j�j < 2:0 pseudorapidity
regions.

we choose to consider various luminosity subsamples resulting from placing cuts at

instantaneous luminosities of 5 and 10, as described in Table 7.1. We study ratios

of the jet ET spectra measured from these di�erent subsamples as a function of jet

ET in di�erent � regions. We refer to di�erent ET ratios using the notation: Rnum
den ,

where the superscript refers to the subsample in the numerator, and the subscript,
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L range L < 5 5 � L < 10 L � 10 L � 5 any

Subsample low med vhi hig tot

Table 7.1: Subsamples with di�erent L cuts.
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to the subsample in the denominator. For example, Rlow
tot means the ratio of the

ET distributions (or cross sections, in the following section) from the low and tot

subsamples.

In order to maximize statistics over the full ET range available, and to
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consider jet triggers where they are above 99% e�cient, following reference [46],

the ET spectra (and hence the ratios) from 50 to 90 GeV are taken from Jet 30,

90 to 130 GeV from Jet 50, 130 to 170 GeV from Jet 85, and above 170 GeV

from Jet Max data. If one measures the ratios of cross sections (as opposed to

ET spectra) from di�erent luminosity subsamples, one expects all the ratios to be

close to 1 in the absence of any luminosity dependence a�ecting the normalization.

However, luminosity cuts for the shape studies are applied event by event, and we

are unable to calculate the integrated luminosities for such subsamples|the PDB

provides us only with run by run2 integrated luminosities. For this reason, an

absolute normalization of the various luminosity subsample ratios from di�erent jet

triggers is a re
ection of what fraction of the particular trigger data is taken from

a luminosity interval under consideration. Since in this section we address only the

question of shape dependence of the cross section on luminosity, it is su�cient to

arti�cially normalize the ratios from di�erent jet triggers to any constant number,

which we naturally choose to be 1. In order to normalize the ratios to 1, for each

trigger, we �t the ratios in the ET region of interest to a constant and rescale the

ratios by the inverse of this constant. As a result of this procedure, in every � region

we end up with the ratios of ET spectra over the full ET range available, and we

can test them on shape di�erences.

We consider the low sample to yield the best representation of a \truly"

luminosity independent cross section. Then, in the case of any measurable lumi-

nosity dependence, the ratio Rtot
low indicates the overall e�ect on the entire data

sample used for the cross section determination. In calculating such ratios special

care is taken for proper estimation of statistical errors since the denominator is a

2more precisely, partition by partition.
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subsample of the numerator. Rtot
low in various � regions are �tted to three di�erent

models: a constant (P0), a straight line (P1), and a second order polynomial (P2).

See Figure 7.1 for � regions j�j < 0:5 and 1:5 � j�j < 2:0 (for the other rapidity

regions see reference [81]). The parameters of the three �tted models along with

usual �2 values and con�dence levels (CL) of the �ts in all � regions are summarized

in Table 7.2. We see that based on CL it is hard to generally exclude any of the

�tted models. However, except for j�j < 0:5, the CL for the P0 �t is always slightly

higher. Also statistical error on the �tted parameter of a constant (p0) is rather

small in all three models, being at most 0:5%, 1:6%, and 3:6% in P0, P1, and P2

models respectively. Contrary to this, uncertainties on the slope and quadratic cor-

rection (p1 and p2 respectively) are extremely large in the �tted models P1 and P2:

in case of P1 model, the uncertainties on the slope are more than 100% in every

� region, while in case of P2 model, uncertainties on p1 and p2 are always more

than 50%, and very often more than 100%. Based on these observations, the �t to

P0 appears to be the best candidate for describing the Rtot
low in every � region. We

thus conclude that the ratios do not indicate any signi�cant luminosity dependence

a�ecting the shape of the cross section.

Going one step further, we also examine the ratios Rvhi
low that would be af-

fected most by any luminosity dependence since they correspond to the extreme

values of luminosity. See Figure 7.2 for illustration in the two pseudorapidity re-

gions. The scattered points below ET of 130 GeV are due to the fact that very

little vhi data have been taken for Jet 30 and Jet 50 triggers, as can be seen in

Figure 7.3 from the instantaneous luminosity, L, pro�les of di�erent jet triggers for
the period of Run 1B. The regions of reasonably good statistics, however, are still

compatible with the hypothesis of no shape dependence, as can be seen directly, and
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by repeating the exercise of comparing parameters for the three �tted models [81].

For completeness and as consistency checks we also examine other ratios

of interest, such as Rhig
low, R

med
low , Rvhi

med, and Rvhi
hig. As expected, these ratios too do

not provide any grounds for suspecting luminosity dependence a�ecting the shape

of the cross section [81].

Furthermore, we study the ratios when the JES correction is not applied,

when no ~HT correction is applied, and when the events 
agged by AIDA are ex-

cluded from the sample. Not applying the JES scale worsens the ratios the most,

\turning o�" the ~HT correction has lesser e�ect, and excluding AIDA-
agged events

has virtually no e�ect [81]. Based on these studies, our conclusion is that after

applying all the standard corrections to the data there is no measurable residual

luminosity dependence a�ecting the shape of the inclusive jet cross sections at all

pseudorapidities up to j�j = 3:0.

7.2.2 Normalization Studies

In order to address the question of whether there is any constant o�set in the

luminosity calculation, one needs to subdivide the total sample based on luminosity

cuts applied run by run. We consider the same cuts as in Table 7.1 but this time

we require every event in the run to satisfy the L cut in order for this run to

make it into one of the subsamples. Obviously such cuts are more restrictive, and

therefore one generally ends up with lower statistics|the reason why we preferred

the shape studies to be carried out as described in the previous section: sacri�cing

the knowledge of the exact luminosity for the subsamples in order to gain the

statistical power for investigating possible shape dependence.
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� Fit �2 ndf CL p0 � �p0 p1 ��p1 p2 ��p2

[%] [10�3/GeV] [10�6/GeV2]

P0 43:6 36 18:0 1:000 � 0:002

1 P1 43:4 35 15:6 1:002 � 0:005 �0:023 � 0:053

P2 40:0 34 22:2 0:986 � 0:010 0:291 � 0:178 �1:400 � 0:756

P0 34:5 31 30:4 1:000 � 0:002

2 P1 34:2 30 27:3 1:003 � 0:006 �0:033 � 0:059

P2 34:2 29 23:2 1:004 � 0:012 �0:038 � 0:228 0:024 � 1:033

P0 23:5 28 70:8 1:000 � 0:002

3 P1 22:8 27 69:4 0:994 � 0:007 0:061 � 0:075

P2 22:8 26 64:4 0:997 � 0:016 0:002 � 0:322 0:297 � 1:581

P0 8:3 18 97:5 1:000 � 0:003

4 P1 8:2 17 96:2 1:002 � 0:010 �0:022 � 0:114

P2 8:2 16 94:2 0:999 � 0:028 0:005 � 0:646 �0:395 � 3:555

P0 13:8 12 31:6 1:000 � 0:005

5 P1 13:3 11 27:7 1:011 � 0:016 �0:147 � 0:207

P2 12:6 10 25:0 0:949 � 0:034 1:521 � 0:872 �10:280 � 5:454

Table 7.2: Summary of �t parameters, �2 values, degrees of freedom (ndf), and
con�dence levels (CL). Pseudorapidity regions are numberd in accending order ac-
cording to increasing �, i.e. region 1 corrsponds to the central-most (j�j < 0:5)
interval, while region 5 is forward-most (2:0 � j�j < 3:0) interval.

As discussed earlier in this section, during Run 1B the luminosities for the

entire Jet 30 and Jet 50 trigger data and for the Jet Max trigger version 8 are poorly

determined. Therefore, all jet triggers are being matched against the Jet 85 trigger.

For this reason, we check the normalization e�ects for the Jet 85 trigger data only.

The integrated luminosities for di�erent subsamples of this trigger are calculated

using PDB [82], and are summarized in Table 7.3. Since earlier we establish no

shape dependence of the cross section on luminosity, we now �t cross section ratios
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Subsample low med vhi hig totR L dt [nb�1] 7968 22831 2055 32121 51441

Table 7.3: Integrated luminosities for di�erent subsamples of Jet 85 data.

Rtot
low from Jet 85 in the ET region of interest only to a constant. See plots on

the left in Figure 7.4 for rapidity regions j�j < 0:5 and 1:5 � j�j < 2:0 (plots for

all � regions considered can be found in reference [81]). The values of the �tted

constants are shown on the right plot of Figure 7.4 for all �ve � regions. The inner

error bars represent statistical errors from the �t, while the outer error bars include

(in quadrature) the systematic uncertainty on the luminosity determination due to

a Level � hardware ine�ciency [83]. The systematic error of 0:95% is estimated



234

based on Figure 5 of reference [83] for the low and hig luminosity subsamples [84].

This error is considered to be uncorrelated and independent in the low and hig

subsamples, thus resulting in a systematic uncertainty on the cross section ratios of

1:34%. It is this systematic uncertainty that is added in quadrature with statistical

errors due to the �t. In three � regions we see a 1� agreement between the �tted

constant and expected value of 1; in 1:0 � j�j < 1:5 the agreement is within 1:5�

and in 0:5 � j�j < 1:0 within 2�. Given this reasonable agreement with 1, we

conclude that there is no statistically signi�cant normalization o�set in the cross

sections as a function of luminosity.

To summarize, we have checked for residual luminosity dependence e�ects

in the di�erential single inclusive jet cross sections at all rapidities up to j�j = 3:0.

We �nd no signi�cant e�ects in the shape or normalization of the cross sections.
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CHAPTER 8

THE OBSERVED INCLUSIVE JET CROSS SECTIONS

The double di�erential jet cross section with respect to the jet pseudorapidity �

and transverse momentum ET is conventionally denoted by d 2�=(dETd�). The

experimental measure of this cross section for single inclusive jet production (i.e.

for the reaction pp! jet+X) in each ET and � bin is given by:

*
d 2�

dETd�

+
(pp! jet+X) =

N

�ET ��� � "tot �
R Run 1B Ldt ; (8.1)

where N is the number of accepted jets in a given �ET�� bin, "tot represents the

total e�ciency in this bin due to all the quality and acceptance cuts applied (i.e. is

given by "tot = "glob � "MTE � "Z), and the brackets on the left hand side of Eq. (8.1)

indicate that it actually is a measure of the average cross section in a given bin.

Since measuring the jet cross section is a counting experiment, the number of jets

in a bin, N , obeys a Poisson distribution. N is generally much smaller than the

overall total number of jets in the cross section. Therefore, the statistical error on

the cross section in a given bin is expressed by:

p
N

�ET ��� � "tot �
R Run 1B Ldt : (8.2)

The cross sections are measured from the data collected by each of the four

inclusive jet triggers: Jet 30, Jet 50, Jet 85, and Jet Max. Then the cross sections

from the di�erent triggers are combined in such a way that a more restrictive trigger
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Figure 8.1: Observed inclusive jet cross sections in the two central pseudorapidity
regions with the nominal, high, and low jet energy scale (Cafix 5.2) corrections.
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is taken as soon as it becomes at least 99% e�cient, replacing the previous, less

restrictive jet trigger. In this particular measurement, this means taking Jet 30

data from 60 to 90 GeV of jet ET , Jet 50 data from 90 to 130 GeV, Jet 85 data

from 130 to 170 GeV, and Jet Max data above 170 GeV. The reconstructed jets are

further corrected for the e�ects discussed in chapter 4 and are subjected to the data

selection criteria as described in chapter 5. Next the jet energy scale correction is

applied on a jet by jet basis according to the most recent version of the D� JES,

Cafix 5.2. Finally, data are binned in ET and �.

The observed cross sections in the �ve pseudorapidity regions considered

(up to j�j = 3:0) are presented in Figures 8.1{8.3. Filled circles show the cross

sections corresponding to the nominal value of the D� JES correction (Cafix
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5.2). The upward (downward) pointing triangles represent cross sections obtained

by 
uctuating all Cafix 5.2 subcomponent uncertainties up (down) by exactly one

standard deviation. The bin widths in ET range from 10 GeV at lowest ET 's to

as high as 150 GeV at the highest ET point in the central region (j�j < 0:5). The

choice of the particular binning in ET is almost entirely driven by the statistics and

is therefore somewhat arbitrary.

The observed jet cross sections (Figures 8.1{8.3) are distorted by the e�ects

of the �nite resolutions of the detector. The following chapter is devoted to the

detailed discussion of these e�ects followed by the description of the method for

removing the e�ects of resolution smearing from the observed jet cross sections.



240

CHAPTER 9

JET ENERGY RESOLUTIONS AND UNFOLDING

The observed jet energy scale corrected jet cross sections presented in Figures 8.1{

8.3 are still distorted by the �nite resolution of the detector. The single inclusive

jet cross sections, hd 2�=(dETd�)i, are measured as a function of jet ET = E sin �

in �ve intervals of pseudorapidity �. Therefore, the e�ects on the cross sections of

�nite calorimeter resolution on jet energy measurement, as well as the e�ects of �nite

resolution on jet pseudorapidity (or, equivalently, polar angle �) measurement, must

be addressed. Distortions due to such e�ects should be evaluated and removed in

order to produce the physics measurement, i.e. the measurement as it would appear

in a detector with perfect resolution.

Consider a hypothetical sample of monoenergetic jets of energy E0 entering

the calorimeters. Their energies measured in the detector will generally be di�erent

from the incoming energy because of the intrinsic 
uctuations in induced particle

showers as well as in energy detection processes. In linear and hermetic calorimeters

of nearly compensating nature, such as the D� calorimeters, the measured energy

of monoenergetic jets would be \smeared" around the true value by a Gaussian of

some �nite width. The left plot in Figure 9.1 illustrates this. We also note that in

arbitrary (i.e. not necessarily hermetic or linear) calorimeters, the smearing would

not be of a Gaussian nature and would have large asymmetric tails. Consequently,
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Figure 9.1: Finite energy resolution of the detector distorts the measured energy of
monoenergetic jets of energy E0 (left). In contrast with non-hermetic and non-linear
calorimeters, such smearing is Gaussian when calorimeters are nearly hermetic and
linear, such as the D� calorimeters. Even though the energy smearing is Gaussian
in D�, it still distorts the steeply falling energy spectra for various cross section
measurements by \smearing them up". A cartoonist's view of the e�ect on the
hypothetical cross section is indicated in the plot on the right.

the Gaussian smearing of sampled energy in the calorimeters is an attractive feature,

for it allows the separation of the issues of energy scale and resolutions. It is

this property of the D� calorimeters that allows consideration of jet energy scale

independent of jet energy resolutions, as was also discussed in chapter 6.

However, even though jet energy is smeared randomly, it still a�ects the

jet energy or ET spectrum measured. It is seen in Figures 8.1{8.3 that the jet cross

section is characterized by its steep fall as a function of ET|the cross sections span

six to seven orders of magnitude from the lowest to the highest ET 's considered.

Because of the steeply falling cross sections, there are always many more jets at lower

energies than at higher energies. Gaussian smearing will then result in more jets

migrating to higher energies than visa versa. It is this net relocation of jets to higher
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energies that \smears up" the cross section. This is illustratively depicted in the

cartoon in Figure 9.1 for the hypothetical \true" energy spectrum: the \observed"

distribution, indicated by the dashed line, is higher than the true spectrum.

The fact that the Gaussian smearing of a steeply falling distribution results

in a \higher" spectrum can also be easily checked analytically by taking a convolu-

tion of a steeply falling function with a Gaussian of a �nite width. The result of the

convolution will be a function higher than the original function at any given point.

On the other hand, a 
at distribution will obviously be completely una�ected by a

Gaussian smear.

The smearing in measured energy a�ects jet ET directly via ET = E sin �.

Therefore, we conclude that the measured cross sections of Figures 8.1{8.3 are

smeared up compared to the true cross sections we intend to measure. The e�ect

of �nite resolution in � will also distort the cross sections in a similar manner.

However, it will additionally introduce jet migration from one pseudorapidity bin

into another, making it more di�cult to predict the net e�ect. There are two major

sources contributing to possible error in the measurement of � or �: the angular

granularity of the detector and the mismeasurement of the interaction vertex with

respect to which angles are calculated. Studies of � bias, as well as other Monte

Carlo investigations [33], indicate that jet � resolution due to detector segmentation

is negligible.

We �rst discuss the method for measuring jet energy resolutions. Next, we

address the issue of the e�ect of the �nite vertex resolution on the cross sections.

Finally, we describe the method used to unfold the e�ects of resolutions in the jet

cross sections in order to obtain true distributions.
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9.1 Determination of Jet Energy Resolutions

We �rst consider how a fractional ET or energy resolution of a jet can be determined

in case of perfectly measured angles. In terms of directly measured quantities:

energy E and polar angle � (or, equivalently, pseudorapidity �), jet ET is given by

ET = E sin �. Therefore, if the uncertainty on the angle measurement is su�ciently

small, we can rather safely approximate the fractional jet ET resolution with the

fractional energy resolution �ET =ET � �E=E.

In dijet events, consider the ET asymmetry between the jets de�ned as:

A =
E1
T � E2

T

E1
T + E2

T

; (9.1)

where E1
T and E2

T are measured transverse energies of the two jets. In a carefully

selected dijet event, in the absence of any resolution e�ects, the two jets will have

exactly equal transverse momenta. Therefore it is clear that the deviation from

zero of the width of the asymmetry variable in real life might be a measure of the

�nite detector resolution. In fact, assuming E1
T = E2

T � ET and �E1
T
= �E2

T
� �ET ,

the root mean square width (rms) of the asymmetry variable, �A, is related to the

fractional ET resolution rather simply:

�ET
ET

=
p
2�A ; (9.2)

suggesting the measurement of the �A as a method for extracting the fractional ET

resolutions.

Next, we consider a more complicated case which results when the polar

angle is mismeasured due to the nonzero vertex position resolution �Z [85]. For

CC (Central Calorimeter) showers we assume that in r � ' \space" the shower
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occurs at a distance equal to the inner radius of the more �nely segmented 3-rd

electromagnetic layer of CC, Rcal = 91:6 cm. Similarly, for EC (End Calorimeter)

showers we assume that the z{position of showers is equal to the length of the

calorimeters, Zcal = 178:9 cm. Under these assumptions, it follows directly from

the jet ET de�nition that in CC:�
�ET
ET

�2
=
�
�E
E

�2
+
1

4

�
�Z
Rcal

�2
sin2 2� ; (9.3)

while in EC: �
�ET
ET

�2
=
�
�E
E

�2
+
�
�Z
Zcal

�2
cos4 � : (9.4)

It also turns out that, generally speaking, the width of the asymmetry

variable �A cannot be directly related to either fractional ET or E resolutions of a

jet. Fortunately, however, in the special case of events with dijets on the Same Side

(SS), �1 � �2 > 0, a relation similar to that in Eq. (9.2) holds, but for the fractional

energy resolutions:

(�SS
A
)2 =

1

2

�
�E
E

�2
: (9.5)

In the case where two jets are in the Opposite Side (OS), �1 � �2 < 0, topology, one

obtains the following relations in the CC:

(�OS
A
)2 =

1

2

�
�E
E

�2
+
1

4

�
�Z
Rcal

�2
sin2 2� ; (9.6)

and in the EC:

(�OS
A
)2 =

1

2

�
�E
E

�2
+
�
�Z
Zcal

�2
cos4 � : (9.7)

It then follows from these relations that the jet energy resolution can be measured

from the width of the asymmetry variable distribution in the case of SS dijet events

only. Also, the fractional ET resolution is given by:�
�ET
ET

�2
= (�SS

A
)2 + (�OS

A
)2 : (9.8)
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Figure 9.2: The illustration of the
dijet asymmetry distribution along
with a Gaussian �t.

Moreover, the di�erence between the (�OS
A
)2 and (�SS

A
)2 can be employed to extract

the \e�ective" vertex resolution (EVR), �Z , entirely from the data. This method

yields [66] a conservative estimate of the EVR of �Z � 7:5 cm in all pseudorapidity

regions up to j�j = 3:0. The investigation of the e�ects of the EVR on the single

inclusive jet cross sections are discussed in the following section. The width of the

asymmetry variable from the dijet events has been measured separately for SS and

OS events in every rapidity interval up to j�j = 3:0. We will however concentrate

on the SS dijet topology, for it is the �SS
A

that is directly related to the fractional

energy resolutions via Eq. (9.5).

Determination of the width of the asymmetry variable is performed in sev-

eral steps [62, 66, 80]. Dijet events are carefully selected by requiring them to pass

all jet and event quality cuts. The two leading jets are required to be in the same

j�j slice and back{to{back in azimuth to within 5�. The asymmetrized distributions
of quantity A are considered in various ET bins of the average transverse energy of

dijets, hET i, and are �tted to Gaussians as illustrated in Figure 9.2.
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Figure 9.3: Illustration of the third jet ET cut extrapolation for 1:5 � j�j < 2:0 and
95 � hET i < 150 GeV bin with Cafix 5.2.

Two e�ects distort the width of the Gaussian estimated in this way. The

�rst of them is known as a soft radiation bias. Although dijet pair selection require-

ments remove events with more than two reconstructed jets, it is the unclustered

soft radiation in the event that may still prevent the two leading jets from perfectly

balancing in the transverse plane. To deal with this e�ect, �A is calculated with

increasingly restrictive cuts on the ET of the third jet in the event. The results
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are then extrapolated to the ideal case in which the third jet ET is equal to zero.

The extrapolated value of �A corresponding to E
3
T = 0 GeV is taken as a true mea-

sure of the width of the asymmetry variable. The illustration of this procedure for

one particular �{ET bin is shown in Figure 9.3 with the asymmetry distributions

for the �ve soft-third-jet ET cut values considered; the extrapolated value of �A is

determined as the y{intercept of the �tted line in the bottom right plot.

This procedure is repeated in every �{ET bin. The ratio of the �A at E
3
T = 0

GeV to that at E3
T = 8 GeV gives a multiplicative correction which, when applied

to the �A measured at E3
T = 8 GeV (the standard jet ET threshold in the D� jet

�nder), would yield the true value of �A in a given �{ET bin. To account for bin-to-

bin 
uctuations, the correction factors as a function of the dijet average hET i are �t
to a smooth analytic functionK(ET ) = 1�e�a0�a1ET in every pseudorapidity region

considered. It is this �tted value of the soft radiation correction that is actually

applied to the measured �A (at E
3
T = 8 GeV) to obtain its true value.

The second e�ect is commonly referred to as a particle level imbalance

(PLI). It re
ects the fact that, even at the particle level, dijets may not exactly

balance in the transverse plane due to the nonzero energy carried away by partons

or particles emitted outside the particle level algorithm cone. To estimate and

remove this e�ect, the width of the asymmetry variable is measured from a dedicated

Herwig Monte Carlo sample with exactly the same requirements as in the data.

The PLI is then subtracted in quadrature from the calorimeter level asymmetry

measured in the dijet Collider data. In this manner, the method is sensitive only

to the detector jet energy resolution. The �nal, PLI subtracted resolutions are �t



248

Figure 9.4: Fractional jet energy
resolutions measured from SS dijet
asymmetries and parameterized as a
function of jet ET in �ve pseudora-
pidity regions.
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to the standard (see page 114) resolution parameterization:

�E
E

=

s
N2

E2
+
S2

E
+ C2 : (9.9)

Figure 9.4 shows jet fractional energy resolutions as a function of dijet average ET

in �ve pseudorapidity regions, up to j�j = 3:0, as measured from the widths of the

corresponding dijet ET asymmetry variable, corrected for the soft radiation bias

and with the PLI subtracted in quadrature. The error bars are statistical, while the

error bands show the systematic uncertainties due to the method. An additional

uncertainty, originating from imperfect closure of the method as measured in the

MC, is added at the time of the unfolding (to be discussed at the end of this chapter).

9.2 E�ects of Nonzero Vertex Resolution

The widths of the asymmetry variable as measured in the SS and OS dijet topologies

are di�erent. According to Eq. (9.8), this is attributed to nonzero \e�ective" vertex

resolution (EVR), �Z . Based on the measurement of �Z from the data [66], a

conservative estimate for the upper limit of �Z is taken to be �Z � 7:5 cm for all

pseudorapidity regions up to j�j = 3:0. It is clear that the nonzero EVR a�ects jet

cross sections not only by causing jet migration in ET within a given pseudorapidity

interval (much like the e�ect of the �nite energy resolution), but also by introducing

jet bin-to-bin migration in �, causing jets to move from ET spectra in one � interval

to that in other � regions, and visa versa. The net e�ect of the EVR on the cross

sections is thus harder to predict and it is studied in a dedicated Jetrad Monte

Carlo.
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Figure 9.5: The ratios of the Jetrad cross sections smeared by the e�ective vertex
resolution of 7:5 cm and the true cross sections. E�ect of nonzero �Z is in the order
of 1{2% in all pseudorapidity regions. Therefore, no correction due to this e�ect is
applied to the data.

Jetrad is used to generate two sets of jet cross sections in the same ET

and � bins as in the data. The �rst set corresponds to the \true" cross sections.

The second set has the interaction vertex z{coordinate smeared by a Gaussian of
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the width �Z = 7:5|a conservative estimate of EVR over the full dynamic range|

and jet � and ET are recalculated using simple geometrical conversions. Bin-by-bin

ratios of the two sets of cross sections, smeared to true, are shown in Figure 9.5

for all �ve pseudorapidity regions. The net e�ect in the cross section is small (of

order 1{2%), throughout all �'s. Similar results have been observed in an analogous

study for the dijet triple di�erential cross section [66]. The jet migration in ET

due to the EVR is nearly fully compensated by the migration in �. We note that

the two e�ects are quite large when considered separately by recalculating either

(but not both) jet ET or � after the Gaussian �Z smear of the vertex z{coordinate.

Because of the smallness of the net e�ect of the EVR on the single inclusive jet

cross sections, no correction is applied to the data.

9.3 Unfolding of the Cross Sections

The e�ects of �nite calorimeter energy resolution and nonzero e�ective vertex res-

olution (EVR) distort the observed single inclusive jet cross sections. Since the

e�ects of the EVR are negligible, as discussed in the previous section, the only re-

maining e�ect is the smearing upward of the jet cross sections due to the energy

resolution. This e�ect is removed from the cross sections by a method developed

in D� and often referred to as the \unsmearing" or \unfolding" procedure [33, 46].

We describe the method and its application in the case of single inclusive jet cross

sections, along with the derived corrections and associated uncertainties.

We accept as a hypothesis that the \true" inclusive jet cross section in every

pseudorapidity region can be approximated analytically by an ansatz function of
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the following form:

F (ET ;�; �; 
; �) = e�E�
T

 
1 + 


2ETp
s

!�

; (9.10)

where �; �; 
, and � are free parameters. At each given ET point, the ansatz func-

tion of Eq. (9.10) is then smeared by a Gaussian of width equal to the jet energy

resolution �E(ET ) at that ET . This procedure mathematically is described as a

convolution of the two functions:

f(ET ;�; �; 
; �) =
Z
dE 0

T F (E
0
T ;�; �; 
; �)

1p
2��E(E 0

T )
e
� 1

2

�
ET�E0

T
�E (E0

T
)

�2
(9.11)

resulting in a \smeared hypothesis", f(ET ;�; �; 
; �), which should describe the ob-

served data well, if all our assumptions are correct. The standard �2 merit function

is built between the numerically evaluated smeared hypothesis of Eq. (9.11) and the

data, which is then fed into Minuit package [86] for a multiparameter minimiza-

tion, thereby �xing the free parameters �; �; 
 and �. This procedure is illustrated

in Figure 9.6 on the example of the two pseudorapidity regions. The convolution

of the original hypothesis (dashed line) with the Gaussian yields the smeared cross

section (solid line) which is �tted to the data (�lled circles) until a satisfactory value

of the �2 per degree of freedom is achieved.

Finally, the unfolding correction is obtained in each of the pseudorapidity

regions by taking the ET bin-by-bin ratios of the original hypothesis (dashed lines

in Figure 9.6) to the smeared ansatz (solid lines):

Runf (ET ) =
F (ET ;�; �; 
; �)

f(ET ;�; �; 
; �)
: (9.12)

Figure 9.7 shows the unfolding correction factors Runf as a function of jet ET for

each of the �ve pseudorapidity intervals. The unfolding correction becomes espe-

cially large at the highest ET 's. This is due to the fact that jet cross sections become
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kinematic limit in a given � interval. On the other hand, the increase in Runf at
lowest ET 's is attributed to the degraded energy resolutions.

increasingly steeply falling as they start to approach the kinematic limits at highest

ET 's. Therefore, even though the fractional jet energy resolutions improve with

increasing ET , the amount of the distortion in the cross sections due the �nite reso-

lution smearing still increases dramatically. On the other hand, at lowest ET 's, jet
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energy resolutions are poor, once again causing increase in the size of the unfolding

correction. The existence of an extremum in Runf as a function of ET thus is a result

of the interplay between the varying degree of the steepness of the cross section as

a function of ET and the ET dependence of the jet energy resolutions. The �nal jet

cross sections, unfolded for the detector resolution e�ects, are obtained by scaling

each data point in every ET bin by the corresponding unfolding correction factor.

Figure 9.6 shows both observed (�lled circles) and unfolded data (�lled triangles)

for visual comparison.

To estimate the statistical errors on the unfolding correction due to resolu-

tion and ansatz �ts, we start from the general error propagation formula:

(�Runf (ET ))
2 =

@ 2Runf

@pi@pj
Cov(pi; pj) ; (9.13)

where a sum over the repeated indices is understood. The indices run over the ansatz

parameters �; �; 
 and �, and the resolution �t parameters N , S, and C, used in the

parameterizations of (�E=E) as a function of jet ET . The correlations between the

ansatz and the resolution parameters are assumed to be zero. On the other hand,

the correlations among the ansatz parameters and among the resolution parameters

are obtained from the corresponding �ts. The partial derivatives @Runf =@pi are

calculated numerically (of course, @Runf =@� = 0).

The systematic error due to the the resolution closure is also included,

amending the usual resolution parameterizations by closure parameterization d1 +

d2=E
2
T . The parameters d1 and d2 are then treated in exactly the same way as

resolutions parameters N , S, and C, except that they are nominally zero with the

errors of 0:0024 and 14:3, respectively [87].
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CHAPTER 10

RESULTS AND CONCLUSIONS

The �nal single inclusive jet cross sections are obtained from the observed cross

sections of Figures 8.1{8.3, discussed in chapter 8, by rescaling them bin-by-bin

according to the unfolding correction factors of Figure 9.7, presented in the previous

chapter. Figure 10.1 shows the �nal, unfolded cross sections as a function of jet ET

in �ve pseudorapidity regions considered along with the statistical errors only. The

cross sections based on the integrated luminosity of 92 pb�1 of the Run 1B data

sample are presented for the nominal values of the D� jet energy scale correction,

Cafix 5.2. The numerical values of the cross sections, along with both statistical

and systematic uncertainties, as well as the ET bin ranges and the best estimates

of the bin centroids are summarized in Tables 10.1{10.5.

The notable feature of the jet cross sections is their steeply falling nature.

They span six to seven orders of magnitude from the lowest to the highest ET 's.

The cross sections are measured up to j�j = 3:0, signi�cantly extending previously

available inclusive jet cross section measurements by the D� and CDF experiments

of up to j�j = 0:7. We will next discuss the experimental errors associated with

the measurement as well as the theoretical uncertainties in the pQCD predictions

of the rapidity dependence of the single inclusive jet cross sections, followed by the

comparisons to various theoretical predictions and concluding remarks.
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Bin Range Plotted ET Cross Sec. �Stat. Observed Systematic

(GeV) (GeV) (fb/GeV) Events Uncer.(%)

60{70 64:6 (6:52� 0:04)� 106 22627 �14:1;+14:8
70{80 74:6 (2:84� 0:03)� 106 9642 �14:1;+14:7
80{90 84:7 (1:37� 0:02)� 106 4594 �14:1;+14:7
90{100 94:7 (6:78� 0:04)� 105 30208 �13:7;+14:4
100{110 104:7 (3:69� 0:03)� 105 16311 �13:8;+14:5
110{120 114:7 (2:12� 0:02)� 105 9288 �13:8;+14:6
120{130 124:8 (1:22� 0:02)� 105 5316 �13:9;+14:7
130{140 134:8 (7:50� 0:04)� 104 38318 �13:6;+14:4
140{150 144:8 (4:74� 0:03)� 104 24161 �13:7;+14:7
150{160 154:8 (2:99� 0:02)� 104 15206 �13:9;+14:9
160{170 164:8 (1:96� 0:02)� 104 9951 �14:0;+15:2
170{180 174:8 (1:34� 0:01)� 104 11416 �14:2;+15:5
180{190 184:8 (9:21� 0:10)� 103 7819 �14:5;+15:8
190{200 194:8 (6:11� 0:08)� 103 5282 �14:7;+16:2
200{210 204:8 (4:24� 0:07)� 103 3595 �15:0;+16:6
210{220 214:8 (3:04� 0:06)� 103 2574 �15:3;+17:0
220{230 224:8 (2:21� 0:05)� 103 1869 �15:6;+17:5
230{250 239:4 (1:34� 0:03)� 103 2265 �16:1;+18:2
250{270 259:4 (6:77� 0:20)� 102 1148 �16:8;+19:4
270{290 279:5 (3:88� 0:15)� 102 659 �17:7;+20:7
290{320 303:9 (1:87� 0:09)� 102 478 �18:8;+22:4
320{350 333:9 (7:29� 0:53)� 101 187 �20:4;+24:9
350{410 375:9 (1:99� 0:20)� 101 103 �23:0;+28:8
410{560 462:3 (1:50� 0:34)� 100 20 �29:5;+38:9

Table 10.1: Single inclusive jet cross section in j�j < 0:5.
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Bin Range Plotted ET Cross Sec. �Stat. Observed Systematic

(GeV) (GeV) (fb/GeV) Events Uncer.(%)

60{70 64:6 (5:88� 0:04)� 106 20344 �14:3;+15:0
70{80 74:6 (2:53� 0:03)� 106 8650 �14:3;+15:0
80{90 84:7 (1:19� 0:02)� 106 4035 �14:4;+15:1
90{100 94:7 (5:91� 0:04)� 105 26704 �14:1;+14:8
100{110 104:7 (3:19� 0:03)� 105 14334 �14:3;+15:0
110{120 114:7 (1:84� 0:02)� 105 8218 �14:4;+15:2
120{130 124:8 (1:04� 0:02)� 105 4639 �14:6;+15:4
130{140 134:8 (6:39� 0:03)� 104 33447 �14:3;+15:2
140{150 144:8 (4:00� 0:03)� 104 20898 �14:5;+15:5
150{160 154:8 (2:49� 0:02)� 104 12991 �14:7;+15:9
160{170 164:8 (1:64� 0:02)� 104 8566 �15:0;+16:2
170{180 174:8 (1:08� 0:01)� 104 9505 �15:2;+16:6
180{190 184:8 (7:20� 0:09)� 103 6316 �15:5;+17:1
190{200 194:8 (5:02� 0:08)� 103 4409 �15:8;+17:5
200{210 204:8 (3:42� 0:06)� 103 3008 �16:1;+18:0
210{220 214:8 (2:29� 0:05)� 103 2014 �16:4;+18:6
220{235 227:2 (1:46� 0:03)� 103 1938 �16:8;+19:3
235{250 242:2 (9:33� 0:26)� 102 1241 �17:3;+20:3
250{270 259:4 (4:82� 0:16)� 102 859 �17:9;+21:4
270{290 279:4 (2:45� 0:12)� 102 440 �18:7;+23:0
290{320 203:8 (1:02� 0:06)� 102 279 �19:8;+25:0
320{350 333:8 (4:10� 0:38)� 101 115 �21:3;+27:8
350{400 371:6 (1:38� 0:17)� 101 68 �23:4;+31:9
400{530 441:1 (0:93� 0:25)� 100 14 �28:8;+41:5

Table 10.2: Single inclusive jet cross section in 0:5 � j�j < 1:0.
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Bin Range Plotted ET Cross Sec. �Stat. Observed Systematic

(GeV) (GeV) (fb/GeV) Events Uncer.(%)

60{70 64:6 (4:53� 0:04)� 106 16442 �15:7;+16:7
70{80 74:6 (1:97� 0:02)� 106 6967 �15:6;+16:6
80{90 84:7 (9:10� 0:16)� 105 3157 �15:8;+16:8
90{100 94:7 (4:19� 0:03)� 105 3157 �15:7;+16:6
100{110 104:7 (2:24� 0:02)� 105 10274 �16:0;+17:0
110{120 114:7 (1:22� 0:02)� 105 5601 �16:4;+17:4
120{130 124:7 (6:80� 0:12)� 104 3108 �16:8;+17:9
130{140 134:8 (3:96� 0:03)� 104 21307 �16:9;+18:2
140{150 144:8 (2:32� 0:02)� 104 12510 �17:5;+18:9
150{160 154:8 (1:37� 0:02)� 104 7409 �18:2;+19:7
160{170 164:8 (8:34� 0:12)� 103 4537 �18:9;+20:6
170{180 174:8 (5:05� 0:07)� 103 4636 �19:7;+21:6
180{190 184:8 (3:23� 0:06)� 103 2985 �20:5;+22:7
190{200 194:8 (1:91� 0:05)� 103 1782 �21:4;+23:9
200{220 209:2 (9:93� 0:23)� 102 1882 �22:9;+25:8
220{250 233:3 (3:12� 0:10)� 102 917 �25:7;+29:4
250{290 267:0 (7:57� 0:43)� 101 317 �30:3;+35:5
290{330 306:8 (1:08� 0:15)� 101 52 �37:2;+44:4
330{460 363:5 (0:69� 0:18)� 100 15 �50:9;+61:4

Table 10.3: Single inclusive jet cross section in 1:0 � j�j < 1:5.

10.1 Experimental and Theoretical Uncertainties

The experimental uncertainties due to the data selection e�ciencies, the luminosity

determination including the trigger matching, the measurement of resolutions and

unfolding corrections, and the jet energy scale correction are discussed in previous

chapters. They are presented in Figures 10.2{10.4 for all pseudorapidity regions
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Bin Range Plotted ET Cross Sec. �Stat. Observed Systematic

(GeV) (GeV) (fb/GeV) Events Uncer.(%)

60{70 64:6 (3:42� 0:03)� 106 11081 �16:6;+18:2
70{80 74:6 (1:33� 0:02)� 106 4306 �17:3;+18:7
80{90 84:6 (5:20� 0:13)� 105 1693 �18:0;+19:5
90{100 94:7 (2:54� 0:02)� 105 11224 �18:6;+20:2
100{110 104:7 (1:20� 0:02)� 105 5324 �19:6;+21:4
110{120 114:7 (5:80� 0:11)� 104 2591 �20:7;+22:9
120{130 124:7 (2:87� 0:08)� 104 1293 �21:9;+24:6
130{140 134:7 (1:39� 0:02)� 104 7456 �23:0;+26:3
140{150 144:7 (6:95� 0:11)� 103 3775 �24:5;+28:6
150{160 154:7 (3:57� 0:08)� 103 1967 �26:2;+31:0
160{170 164:7 (1:84� 0:06)� 103 1033 �28:0;+33:8
170{180 174:7 (9:50� 0:31)� 102 913 �30:0;+36:8
180{200 188:9 (3:48� 0:13)� 102 692 �33:0;+41:4
200{230 212:5 (6:34� 0:44)� 101 204 �38:6;+50:3
230{320 254:5 (2:91� 0:50)� 100 34 �50:7;+69:8

Table 10.4: Single inclusive jet cross section in 1:5 � j�j < 2:0.

along with the total uncertainties calculated as the quadrature sum of all errors.

The plots show the fractional errors in percentage as a function of jet ET in the

same bins in which the cross sections are measured. Note that the jet energy scale

(JES) error dominates everywhere. Uncertainties due to the JES are determined as

the di�erence in the cross sections derived with the nominal and with the high and

low energy scale corrections. The deviations from the nominal cross sections are �t

to a second order polynomial to smooth bin-to-bin 
uctuations. The errors due to

data selection are negligible, and uncertainties due to the luminosity determination

are the next largest after the JES errors except at highest ET 's where the errors
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Bin Range Plotted ET Cross Sec. �Stat. Observed Systematic

(GeV) (GeV) (fb/GeV) Events Uncer.(%)

60{70 64:5 (9:79� 0:12)� 105 6531 �22:0;+26:3
70{80 74:5 (3:07� 0:07)� 105 2051 �23:8;+26:9
80{90 84:5 (1:03� 0:04)� 105 692 �25:8;+28:5
90{100 94:6 (3:71� 0:06)� 104 3375 �27:9;+30:9
100{110 104:6 (1:19� 0:04)� 104 1096 �30:3;+34:5
110{130 118:3 (2:87� 0:12)� 103 535 �34:0;+41:1
130{160 141:3 (2:64� 0:09)� 102 903 �40:9;+56:3
160{210 174:9 (4:65� 0:66)� 101 49 �53:1;+88:2

Table 10.5: Single inclusive jet cross section in 2:0 � j�j < 3:0.

due to the resolutions and unfolding procedure become comparable to or even larger

than those due to luminosity measurement.

Uncertainties in the current version of the D� JES, Cafix 5.2, are in

the order of 2{5% in the dynamical range of this analysis, increasing as a function

of both jet ET and �. It is the steeply falling cross sections that \translate" such

relatively small uncertainties into very large errors ranging from approximately 14%

at lowest ET 's to as high as about 40{90% at highest ET 's and pseudorapidities.

Since the statistics at highest ET 's are limited, the method of taking the di�erences

between the cross sections corresponding to the nominal, low, and high Cafix 5.2,

and �tting them to a polynomial introduces additional uncertainties. Therefore,

recently a new method has been devised which also gives a full covariance matrix

associated with the jet energy scale correction [46, 66, 87].

As discussed in chapter 6, the JES response correction is obtained from a

�t to many data points as a function of jet energy. It is the dominant source of
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Figure 10.2: Fractional experimental uncertainties on the cross sections in the two
central pseudorapidity regions. Errors originating from the di�erent sources are
distinguished. The jet energy scale error dominates the total uncertainty in the
cross sections.
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are distinguished. The jet energy scale error dominates the total uncertainty in the
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Figure 10.4: Fractional experimental uncertainties on the cross section in the for-
ward-most pseudorapidity region. Errors originating from the di�erent sources are
distinguished. The jet energy scale error dominates the total uncertainty in the
cross section.

experimental uncertainty at highest ET 's. The correlation matrix of the response

correction has been derived for the 11 values of partially corrected jet energies (see

the discussion on page 199). The errors due to the rest of the subcomponents of

the JES can be classi�ed as completely correlated or uncorrelated across ET and/or

�. Thus the full error matrix of the JES correction can be obtained including the

information of the error correlation of its subcomponents.

In order to improve the statistics in poorly populated bins in the data, a

toy Monte Carlo (MC) jet sample is generated. In MC, Every �{ET bin is evenly

populated by a �xed, large number of jets. A dijet event is generated in a given

bin by randomly selecting Bjorken x values of the hard scattered partons thereby
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setting the scale of the collision (
p
ŝ =

p
x1x2s). All necessary kinematic variables

of partons are calculated given the � bin that is being considered. These partons

are called jets for the purposes of the rest of the discussion of this MC study. The

energies of jets are smeared according to the measured resolution functions presented

in chapter 9. One jet is selected at random and the procedure of generation and

smearing is repeated until it falls in a desired ET bin.

This true jet, call it the \primary" jet, is uncorrected to a best guess \mea-

sured" ET value. Next the vertex z{coordinate, instantaneous luminosity of the

event, and the value of the multiple interaction tool are sampled at random from

the distributions of the corresponding variables obtained in the Collider data. All

these event variables are input parameters to the jet energy scale correction, Cafix

5.2. The generated, uncorrected jet ET is then corrected according to Cafix 5.2

and, if this JES-corrected ET does not match the original MC jet ET , the process is

repeated until the convergence is achieved. Using the pre-JES (for the interpolation

of the response �t correlation matrix, JES-partially corrected) value of jet ET , the

JES is asked to provide errors on its subcomponents.

To obtain the intercorrelation of the JES errors, one needs another jet

which will sweep all �{ET bins. Therefore, at the same time, other dijet events are

generated and randomly selected jets from these events are forced to sweep all �{ET

bins. They undergo the smearing and JES-uncorrection procedure in exactly the

same manner as the primary jet. Thus, for any given �{ET bin there is a primary

jet and as many \secondary" jets as there are the �{ET bins.
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At this point, the JES is asked to provide errors corresponding to the pri-

mary and secondary jets and also the correlation coe�cients of the response cor-

rection (as the response correlation matrix is evaluated only at 11 energy points,

a two dimensional interpolation of the matrix is required to obtain the correlation

parameters at an arbitrary energy point). Di�erent subcomponents of Cafix 5.2

are classi�ed according to their degree of correlation in ET and �. The total JES

error is split into three components: completely correlated, completely uncorrelated

and partially correlated errors. Thus, the three corresponding error matrices are

built and all �{ET bins are �lled by sweeping them with the secondary jet. The

number of primary jets in a given sample is large enough to remove any statistical


uctuations. Then the next primary jet is generated in a di�erent �{ET bin and the

entire process is repeated. This way, all bins are �lled with corresponding values of

the JES errors also taking into account their bin-to-bin correlations.

The ET dependence of the jet cross sections as measured in the data is

used to transform the uncertainties in jet energy scale into the errors in the cross

section via the usual error propagation. After enough statistics are accumulated,

one obtains three error matrices for the three degrees of correlations. When put

together, they yield the full error matrix, or the covariance matrix of the JES in

the same bins as the cross sections.

The remaining subcomponents of the total cross section error (such as due

to data selection, luminosity, etc.) are also classi�ed according to their degree of

correlation and are put in the corresponding three error matrices. The toy MC is

however run only for the JES correction, as it is the dominant source of the un-

certainty and because the partial correlations are determined most accurately for
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the JES response correction. Uncertainties due to data selection, luminosity, res-

olutions and unfolding are added together with the JES error matrix giving the

full error matrix associated with the experimental measurement. Knowing the di-

rect or \induced" correlations among the errors in di�erent �{ET bins of the total

cross section errors is very important for carrying out precise comparison tests with

the corresponding theoretical predictions. These �nal comparisons are presented in

the following section but before turning to them we discuss the theoretical calcu-

lations of jet cross sections used for these comparisons along with the associated

uncertainties.

Next-to-leading order (NLO) predictions for the inclusive cross section have

been published in reference [88] and provided through the NLO program Jetrad

by Giele, Glover, and Kosower [89]. The two predictions agree within a few percent.

Whereas the prediction by Ellis et al. is analytic, Jetrad generates \events" with

�nal state partons. Cross sections can be obtained by histogramming jets from

a large number of events as a function of ET and �. All predictions have been

generated with the Jetrad program ported to the D� environment.

A NLO QCD calculation requires specifying several \parameters". First,

the parton distribution function (PDF) must be selected. The many PDF's available

can result in 5{10% variations in the inclusive jet cross sections. Truncation of the

QCD NLO predictions at order �3s additionally introduces some residual dependence

on the renormalization (�R) and factorization (�F ) scales at which the calculations

are done. The two scales are usually set equal to each other, �R = �F = �. The

dependence is of the order 5{15% for small � depending on ET . Typical � scale

choices include c �ET or c �Emax
T , where c varies from 0:25 to 2 and Emax

T represents
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Figure 10.5: The illustration of the uncertainties in the theoretical pQCD predic-
tions calculated with Jetrad for the central pseudorapidity region (j�j < 0:5). The
uncertainties become larger at higher �'s. They are generally in the order of the
systematic experimental uncertainties.
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the leading jet ET in the event.

In addition to the PDF and renormalization scale, each NLO prediction

must incorporate a NLO jet �nding algorithm. At NLO, the clustering algorithm

must include a parameter indicating the proximity of partons to be clustered in ��'
space. We choose the algorithm which requires the �nal state partons to be within

one cone width (R) of their summed ET vector direction and within 1:3 cone widths

of one another (i.e. Rsep = 1:3). In other words, only �nal state partons within

Rsep = 1:3 of each other are to be clustered into �nal state \jets". An extensive

study of this parameter can be found in the reference [90].

In summary, the NLO calculation with Jetrad provides theoretical pre-

dictions for the inclusive jet cross section. The NLO calculation is sensitive to the

choice of PDF, renormalization and factorization scale �, and clustering algorithm.

Overall the theoretical inclusive jet prediction carries about 15% normalization un-

certainty and about 15% shape uncertainty as jet ET is varied from 50 to 450 GeV

in the central (j�j < 0:5) pseudorapidity region. Figure 10.5 shows some of the

dependences in the theoretical predictions as the ratios of the cross sections gener-

ated with the di�erent input parameters for the central pseudorapidity region. The

theoretical uncertainties increase with increasing � and are generally of the same

order as the systematic experimental uncertainties.

10.2 Data and Theory Comparison

In this section we discuss the comparison of our results to NLO QCD predictions for

the inclusive jet cross sections. Figures 10.6{10.8 present linear di�erences between
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Figure 10.8: The comparison between the D� single inclusive jet production cross
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T =2 and Rsep = 1:3.

the data (D) and Jetrad theoretical predictions (T) normalized to the prediction

(i.e. (D-T)/T) in all pseudorapidity regions considered along with the statistical er-

ror bars and experimental systematic uncertainty bands. The theoretical prediction

in Figures 10.6{10.8 is generated with CTEQ3M PDF, with the renormalization and

factorization scales set to Emax
T =2 and with the clustering parameter Rsep = 1:3|

the choice of the input parameters that have become a standard in D�. The data

agrees with theoretical calculations within errors. Deviations from theory at highest

ET 's in the pseudorapidity region 0:5 � j�j < 1:0 are not very signi�cant given the

large uncertainties.



274

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

50 100 150 200 250 300 350 400 450 500

(D
a
ta
-
T
h
e
o
ry
)/
T
h
e
o
ry

ET (GeV)

PDF: CTEQ4M �F = �R = Emax
T

=2 Rsep = 1:3

0:0 � j�j < 0:5

0:5 � j�j < 1:0

1:0 � j�j < 1:5

1:5 � j�j < 2:0

2:0 � j�j < 3:0

Figure 10.9: The comparison between the D� single inclusive jet production cross
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(up to j�j = 3:0) and the �3s QCD predictions calculated by Jetrad with the
CTEQ4M PDF and the input parameters �R = �F = Emax

T =2 and Rsep = 1:3.
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PDF and the input parameters �R = �F = Emax

T =2 and Rsep = 1:3.
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Figure 10.12: The comparison between the D� single inclusive jet production cross
sections, hd 2�=(dETd�)i, as a function of jet ET in all �ve pseudorapidity regions
(up to j�j = 3:0) and the �3s QCD predictions calculated by Jetrad with the
MRSTg" PDF and the input parameters �R = �F = Emax

T =2 and Rsep = 1:3.
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Figure 10.13: The comparison between the D� single inclusive jet production cross
sections, hd 2�=(dETd�)i, as a function of jet ET in all �ve pseudorapidity regions
(up to j�j = 3:0) and the �3s QCD predictions calculated by Jetrad with the
MRSTg# PDF and the input parameters �R = �F = Emax

T =2 and Rsep = 1:3.
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PDF �2 �2/ndf Probability (%)

CTEQ3M 183:32 2:04 2:40� 10�6

CTEQ4M 143:30 1:59 3:02� 10�2

CTEQ4HJ 54:11 0:60 99:90

MRST 126:39 1:40 0:69

MRSTg" 136:83 1:52 0:11

MRSTg# 177:93 1:98 9:82� 10�6

Table 10.6: Results of the �2 test for the full dynamic range.

PDF �2 �2/ndf Probability (%)

CTEQ3M 1:44 6:01� 10�2 100:00

CTEQ4M 1:02 4:23� 10�2 100:00

CTEQ4HJ 0:80 3:32� 10�2 100:00

MRST 14:27 0:59 94:04

MRSTg" 3:25 0:14 99:99

MRSTg# 37:16 1:55 4:22

Table 10.7: Results of the �2 test in the central (j�j < 0:5) region only.

Comparisons have also been made with all recent versions of the CTEQ

and MRST families of PDF's which are presented in Figures 10.9{10.13. The visual

agreement is the best for the CTEQ4HJ|the PDF tuned to the CDF central (0:1 <

j�j < 0:7) inclusive jet cross section data which had shown an excess over the theory

at the highest ET 's when compared to other available PDF's.

A better quantitative measure of the agreement or disagreement in such

comparisons is the �2 per degree of freedom calculated for the bin-by-bin di�erences

between the data and theory. Determination of the full error matrix or, equivalently,
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PDF �2 �2/ndf Probability (%)

CTEQ3M 77:97 1:62 0:40

CTEQ4M 66:78 1:39 3:77

CTEQ4HJ 25:61 0:53 99:67

MRST 104:05 2:17 5:11� 10�4

MRSTg" 71:15 1:48 1:66

MRSTg# 153:40 3:20 6:029� 10�11

Table 10.8: Results of the �2 test in the pseudorapidity region j�j < 1:0.

PDF �2 �2/ndf Probability (%)

CTEQ3M 84:26 1:26 7:55

CTEQ4M 69:81 1:04 38:33

CTEQ4HJ 29:47 0:44 99:99

MRST 110:56 1:65 6:46� 10�2

MRSTg" 76:55 1:14 19:88

MRSTg# 164:24 2:45 3:90� 10�8

Table 10.9: Results of the �2 test in the pseudorapidity region j�j < 1:5.

the full covariance matrix of the experimental uncertainties, allows comparisons to

the theoretical predictions which have more discrimination power than the visual

comparisons presented in Figures 10.6{10.13. The standard de�nition of �2 for such

a comparison would be:

�2 =
X
i;j

(Di � Ti) Cov
�1
i;j (Dj � Tj) ; (10.1)

with (Di � Ti) being the deviation of the measured cross section (Di) from the

theoretical prediction (Ti) in the i-th bin, and Cov�1i;j being the inverse of the full

covariance matrix of the measurement. There are 90 total �{ET bins considered in
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PDF �2 �2/ndf Probability (%)

CTEQ3M 124:69 1:52 0:17

CTEQ4M 102:52 1:25 6:22

CTEQ4HJ 37:02 0:45 99:99

MRST 117:53 1:43 0:62

MRSTg" 103:88 1:27 5:18

MRSTg# 171:43 2:09 2:82

Table 10.10: Results of the �2 test in the pseudorapidity region j�j < 2:0.

the measurement of the rapidity dependence of the inclusive jet cross section.

However, as discussed earlier in this chapter and in previous chapters, many

of the systematic uncertainties a�ecting the normalization of the cross sections are

partially or fully correlated across ET and �. It is known that when correlated

normalization error is included in the standard de�nition of the �2, Eq. (10.1), a

bias is introduced. This is known as Peelle's Pertinent Puzzle [91]. The standard

�2 de�nition then would prefer theoretical predictions that have a normalization

below that of the data.

It has been demonstrated that a modi�ed de�nition of �2 is needed to

remove the bias [92]. When making such comparisons, the question we try to

answer is: \How likely it is that a given theory could have produced the observed

data?". To also be consistent with this choice of a question we ask, we rede�ne the

covariance matrix and assign the fractional experimental uncertainties to theoretical

predictions, i.e. Covi;j ! Covi;j
Ti
Di

Tj
Dj

. Thus, instead of the standard �2, we
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consider the modi�ed �2 and calculate it according to the following formula:

�2 =
X
i;j

(Di � Ti)

"
Covi;j

Ti
Di

Tj
Dj

#�1
(Dj � Tj) : (10.2)

In other words, we have chosen to perform �2 comparisons between the data and

the theoretical predictions by using systematic uncertainties given by the product

of the theoretical predictions and the measured fractional uncertainties because

this method removes bias in the �2 test due to correlated systematic normalization

uncertainties. We also note that in this way the test is more sensitive to shape

di�erences between the data and theoretical predictions than to the di�erences in

overall normalization.

The results of the �2 tests for the theoretical predictions generated with

di�erent PDF's are summarized in Table 10.6 for the full dynamical range of this

measurement of the rapidity dependence of the inclusive single jet production cross

section. CTEQ4HJ PDF exhibits the best agreement with the measured data with

a nearly 100% probability of producing the observed data.

To address the question as to how signi�cant the deviations at the highest

ET points in the 0:5 � j�j < 1:0 region are, we calculated the joint �2 with and with-

out the three highest ET points from that region. The corresponding probability

values changed by only a tenth of a percent as expected due to large experimental

uncertainties associated with the measurement in this region of the phase space. It

is hard to imagine a QCD process that might lead to such an excess in this one

particular area of phase space. Perhaps this large deviation is due to our inade-

quate understanding of the detector systematics in this most poorly instrumented

intercryostat region. On the other hand, we would like to point out that the ex-

tensive closure studies have not revealed any deviation of this order of magnitude
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in our experimental measurement. Irrespective of the cause of this large deviation,

however, our studies indicate that the �2 statistic is not sensitive to it.

We also repeated the �2 tests for di�erent dynamical ranges starting from

the central-most cross section (j�j < 0:5) and increasing the pseudorapidity reach

by including adjacent, more forward � regions. The results of these studies are

summarized in Tables 10.7{10.10. They indicate that the largest disagreement

between the data and the theoretical predictions is observed in the pseudorapidity

region 0:5 � j�j < 1:0. However, the inclusion of higher � regions starts to recover

the overall joint �2 values due to the many relatively well measured lower ET data

points which nominally agree with the theoretical predictions better in the other

pseudorapidity regions than in the region 0:5 � j�j < 1:0.

We note that the measurement of the inclusive jet cross section in the central

(j�j < 0:5) pseudorapidity region alone does not provide enough discriminative

power among theoretical predictions generated with di�erent PDF's. However, by

extending the measurement to higher � regions the discriminative power increases

due to the increase in the size of the data sample and also because with many more

degrees of freedom the comparison tests based on �2 statistics intrinsically become

more discriminatory (as one can see from probability contours in the space of �2/ndf

versus ndf).

10.3 Conclusions

We have made a new measurement of the rapidity dependence of the single inclusive

jet production cross section in proton{antiproton collisions at the center-of-mass
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energy of
p
s = 1:8 TeV with the D� detector at the Fermilab Tevatron Collider.

This measurement provides a stringent test of perturbative QCD over the large

dynamic range accessible to D�, signi�cantly extending the previously available

D� and CDF inclusive jet cross section measurements which ended at j�j = 0:7 to

jet pseudorapidities of 3:0.

Theoretical predictions calculated with di�erent parton distribution func-

tions are characterized by varying degrees of agreement with theory. The visual,

qualitative comparisons between the data and the theoretical predictions with di�er-

ent PDF's do not provide grounds for strong discrimination among di�erent sets of

PDF's with the current experimental uncertainties. The quantitative tests based on

the unbiased �2 statistics with full covariance matrix of the measurement for the par-

ticular choice of the parameters for calculating the theoretical predictions (the renor-

malization and regularization scales and the clustering parameter) indicate the pref-

erence for the CTEQ4HJ PDF. It is notable that we �nd good agreement|within

experimental uncertainties|with the theoretical predictions based on CTEQ4HJ

PDF over the full dynamic range.

Moreover, the measurement of jet cross sections very close to the beamline

demonstrates our good understanding of the detector as well as the jet energy

scale and other systematic corrections in nearly full solid angle coverage around the

interaction region. The results of this analysis are applicable to both QCD tests and

other physics analyses requiring a reliable understanding of the jets as dominant

source of background or as tagging objects. This experience is invaluable not only

for D� Run 1 analyses but also for future studies to be carried out at the Tevatron

upcoming run as well at the next generation Large Hadron Collider experiments.
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